In this article a new optimal path planner for mobile robot navigation based on invasive weed optimization (IWO) algorithm has been addressed. This ecologically inspired algorithm is based on the colonizing property of weeds and distribution. A new fitness function has been formed between robot to goal and obstacles, which satisfied the conditions of both obstacle avoidance and target seeking behavior in robot present in the environment. Depending on the fitness function value of each weed in the colony the robot that avoids obstacles and navigating towards goal. The optimal path is generated with this developed algorithm when the robot reaches its destination. The effectiveness, feasibility, and robustness of the proposed navigational algorithm has been performed through a series of simulation and experimental results. The results obtained from the proposed algorithm has been also compared with other intelligent algorithms (Bacteria foraging algorithm and Genetic algorithm) to show the adaptability of the developed navigational method. Finally, it has been concluded that the proposed path planning algorithm can be effectively implemented in any kind of complex environments.

This content is only available via PDF.
You do not currently have access to this content.