An effort was undertaken to perform CFD analysis of fluid flow in Lean-Direct Injection (LDI) combustors with axial swirl-venturi elements for next-generation LDI-2 design. The National Combustion Code (NCC) developed at NASA Glenn Research Center was used to perform reacting flow computations on an LDI-2 combustor configuration with thirteen injector elements arranged in four fuel stages. Reacting computations were performed with a consistent approach for mesh-optimization, liquid spray modeling and kinetics modeling. Computational predictions of Emissions Index (EINOx) and combustor exit temperature were compared with two sets of experimental data at medium and high-power operating conditions, for two different pressure-drop conditions in the combustor. The NCC simulations predicted the combustor exit temperature to within 1–2% of experimental data. The accuracy of the EINOx predictions from the NCC simulations was within 10% to 30% of experimental data.

This content is only available via PDF.
You do not currently have access to this content.