The present work deals with time-resolved investigation of the flow field during acoustic self-excitation by a lean premixed flame in a dump combustor with varying equivalence ratio at a constant air flow rate. Simultaneous measurements of pressure fluctuations, velocity fields using Time resolved Particle imaging velocimetry (TR-PIV) and CH* chemiluminescence were performed. The pressure, velocity and chemiluminescent intensity time traces were Fourier transformed to estimate the frequency and amplitudes. Conditions of maximum pressure amplitude correspond to the prevalence of intermittent bursts in pressure, velocity, and chemiluminescent intensity. Further, Proper orthogonal decomposition (POD) is applied to the chemiluminescent intensity and velocity fields. The POD mode shapes are able to capture the modes pertaining to both the acoustic and vortex mode of flame/flow oscillations. The burst oscillations are understood by examining the sequence of time-resolved velocity and chemiluminescent intensity during their growth and decay regimes. The growth of oscillations is promoted by the flame heat release fluctuations following the pattern of the large-scale vortex roll-up in the recirculation zone downstream of the dump plane, causing a tendency of acoustic excitation at the vortex mode. As the amplitude rises, the natural acoustic mode of the duct is simultaneously amplified, leading to small-scale vortices shed from the step corner at the acoustic time scale. These small-scale vortices adversely interact with the large-scale vortex controlling the heat release, resulting in its weakening and hence the decay of oscillations. This behavior was further observed in the spatially averaged vorticity along the shear layer. In addition to this, the time traces of the pressure and the velocity fluctuations at the shear layer and located half step height from the separation point were overlapped. The overlapped time traces showed a drift in the instantaneous phase during which the growth and decay of the oscillations were observed.
Skip Nav Destination
ASME 2014 Gas Turbine India Conference
December 15–17, 2014
New Delhi, India
Conference Sponsors:
- International Gas Turbine Institute
ISBN:
978-0-7918-4964-4
PROCEEDINGS PAPER
Investigation of Combustion Oscillations of Premixed Dump Combustor Using Time-Resolved Particle Image Velocimetry
Ramgopal Sampath,
Ramgopal Sampath
IIT Madras, Chennai, India
Search for other works by this author on:
S. R. Chakravarthy
S. R. Chakravarthy
IIT Madras, Chennai, India
Search for other works by this author on:
Ramgopal Sampath
IIT Madras, Chennai, India
Vikram Ramanan
IIT Madras, Chennai, India
S. R. Chakravarthy
IIT Madras, Chennai, India
Paper No:
GTINDIA2014-8288, V001T03A013; 8 pages
Published Online:
February 19, 2015
Citation
Sampath, R, Ramanan, V, & Chakravarthy, SR. "Investigation of Combustion Oscillations of Premixed Dump Combustor Using Time-Resolved Particle Image Velocimetry." Proceedings of the ASME 2014 Gas Turbine India Conference. ASME 2014 Gas Turbine India Conference. New Delhi, India. December 15–17, 2014. V001T03A013. ASME. https://doi.org/10.1115/GTINDIA2014-8288
Download citation file:
34
Views
Related Proceedings Papers
Related Articles
Effect of Insert Porosity on Combustion Instability In A Lean Premixed Combustor Analyzed By A Pod-Based Phase Reconstruction Technique
J. Eng. Gas Turbines Power (January,0001)
Combustion Instabilities and Control of a Multiswirl Atmospheric Combustor
J. Eng. Gas Turbines Power (January,2007)
The Effect of Multiple Coexisting Convective Modes in Determining Thermoacoustic Behavior of a Partially Premixed Swirl Flame
J. Eng. Gas Turbines Power (June,2022)
Related Chapters
Experimental Investigation of Ventilated Supercavitation Under Unsteady Conditions
Proceedings of the 10th International Symposium on Cavitation (CAV2018)
Cavitating Structures at Inception in Turbulent Shear Flow
Proceedings of the 10th International Symposium on Cavitation (CAV2018)
Outlook
Closed-Cycle Gas Turbines: Operating Experience and Future Potential