In the present work, a numerical model has been developed using ANSYS Fluent 14.5 to simulate the combustion phenomenon in a partially premixed, swirl-stabilized, LPG-fueled gas turbine combustor. In a practical gas turbine combustor, pulsations in the flow at the air side cannot be avoided which can lead to thermoacoustic instabilities. The primary objective of the study is to numerically analyze the effect of such pulsations on the fluid flow and combustion process inside the combustor. Different parameters like static temperature, progress variable and product formation rate are compared at the outlet plane of the combustor. The effect of change in the parameters like amplitude and frequency of the sinusoidal air flow input has also been investigated in the present study. It is observed that the solution changes from periodic to quasi-periodic at a higher amplitude condition. The numerical model was qualitatively validated against experiments performed on a laboratory-scale premixed, swirl-stabilized, gas turbine combustor.

This content is only available via PDF.
You do not currently have access to this content.