A review of the developed plasmachemical technologies of pyrolysis, hydrogenation, thermochemical treatment for combustion, gasification, radiation-plasma, and complex conversion of solid fuels, including uranium-containing slate coal, and cracking of hydrocarbon gases, is presented. The use of these technologies for obtaining target products (hydrogen, carbon black, hydrocarbon gases, synthetic gas, and valuable components of the coal mineral mass) meet the modern experimental and economic requirements to the power sector, metallurgy and chemical industry. Plasma coal conversion technologies are characterized by a small time of reagents retention in the reactor and a high rate of the original substances conversion to the target products without catalysts. Thermochemical treatment of fuel for combustion is performed in a plasma fuel system, representing a reaction chamber with a plasmatron, while other plasma fuel conversion technologies are performed in a combined plasmachemical reactor of 100 kW nominal power, in which the area of heat release from the electric arc is combined with the area of chemical reactions.

This content is only available via PDF.
You do not currently have access to this content.