The rear-mounted engine is widely used in business and regional jets. It is a “clean wing” design. The engine is mounted behind the wing, so that the inlet/outlet of the nacelle has a minor influence on the flow over the wing. The engine thrust line is close to the fuselage axis. As a result, the asymmetric yaw moment will be smaller when single engine stall occurs.

Strict regulations and requirements were set by certification agencies to assess aircraft maneuver capability as well as engine operating characteristics. These regulations are mainly defined to evaluate structural strength, aerodynamics, & engine/aircraft performance. However, due to the nature of the complexity of the flow field at the air intake, the inlet compatibility of fuselage mounted engines becomes one of the most complicated & challenging items to meet FAR33 as well as FAR25 certification requirements, especially during cross wind operating conditions.

This research paper discusses the inlet compatibility of rear-mounted aircraft engines with respect to the installed configuration and crosswind operating conditions. Models of two installed configurations, set by the relative position of engine to the fuselage and the wing were created. In each case, the engine inlet flow field was calculated at various ambient wind conditions. Comparisons of the total pressure profile at the air intake were made to assess the likelihood of flow separation at the inlet of engine. Inlet distortion levels of corresponding total pressure profiles were calculated for each operating and installed condition. Assessments are made based on intensive usage of CFD analysis of different engine installations and operating conditions. The flow field information obtained by CFD calculation reveals a close coupling phenomenon exists among engine installations, cross wind, and inlet capability.

This content is only available via PDF.
You do not currently have access to this content.