Very high thermal loads are expected in re-entry vehicles traveling at hypersonic Mach numbers due to severe aerodynamic heating. In the present study, numerical investigations are carried out to analyze the use of film cooling technology for a fully reusable and active thermal protection system of the re-entry vehicle. Simulations are done to examine the fundamental flow phenomenon and the performance of blunt body film cooling in hypersonic flows. Simulations are conducted for a blunt -nosed spacecraft flying at Mach numbers varying from 4 to 8 and 40 deg angle of attack. Film cooling holes are provided on the bottom of the blunt-nosed body. Standard values at an altitude of 30 km are used as in flow boundary conditions. The dependency of blowing ratios, stream-wise injection angle and inlet Mach number on the film cooling effectiveness are investigated. It is observed that the film cooling effectiveness reduces with increase in coolant injection angle. The film cooling performance is found to be decreasing with increase in Mach number. The results could provide useful inputs for optimization of an active thermal protection system of re-entry vehicles.

This content is only available via PDF.
You do not currently have access to this content.