The characteristics of a boundary layer from the semi-circular leading edge of a flat plate has been investigated for two levels of stream turbulence (Tu = 0.5% and 7.7%) in a low-speed wind tunnel. Measurements of velocity and surface pressure were made along with a planar PIV to visualize flow structures for varying turbulence levels at a Reynolds number of 25000 (based on the leading edge diameter). At low stream turbulence the measurements reveal flow undergoes separation in the vicinity of leading-edge with reattachment in the downstream. Velocity spectra illustrates that the separated shear layer is laminar up to 20% of separation length and then the perturbations are amplified in the second half attributing to breakdown and reattachment. It is also evident that the shear layer is inviscidly unstable and the predominant shedding frequency when normalised with respect to the momentum thickness at separation shows a good agreement with previous studies. The bubble length is highly susceptible to change in Tu depicting an attached layer which grows into a fully turbulent profile at high Tu. Here, the spectra for an attached layer depicts a turbulent-like flow with band of frequencies from the beginning.

This content is only available via PDF.
You do not currently have access to this content.