Centrifugal compressor blade trimming can be used for the purpose of changing the performance characteristics of an impeller or allowing a single impeller design to be used for a range of operating conditions. There are a number of methods of impeller blade trimming that may be employed to change the impeller flowrate, the pressure ratio, or both; however, the limitations of blade trimming and the effect on the flow field are not well understood.

In this study, CFD is used to model the effects of three different methods of blade trimming on a single centrifugal compressor design. Impeller performance characteristics and analysis of the flow field are presented for a series of trims for each of the three trimming methods.

Each method of trimming was found to be limited at some point by choke. Shifting the original shroud profile both axially and radially in proportion to the desired flow coefficient allowed the pressure ratio and efficiency of the original impeller to be maintained while changing the flow coefficient. Trimming the blades along the meridional length in proportion to the desired new flow coefficient without regard to the original shroud profile produced similar results, but allowed the impeller to be trimmed further than was practical using the radial-axial shroud offset method. Trimming the blades axially so that the original shroud profile is maintained produced a change in pressure ratio while maintaining the original impeller flow coefficient.

This content is only available via PDF.
You do not currently have access to this content.