To achieve at a more precise designing procedure in axial-compressors as well as a higher pressure ratio value, a comprehensive understanding on the flow aerodynamics and the governing phenomena is required. Existence of these complicated phenomena e.g., simultaneous production of supersonic and subsonic flows, shock-boundary layer interaction, unique incidence phenomenon, etc, makes it difficult to analyze the flow in the transonic compressors. One of the methods which is useful in the modeling of the phenomena occur in the compressors is investigating the flow in the blade to blade passage.

In this paper, employing the simultaneous solution of the full Navier-Stokes equations (using the Roe-FDS numerical method) and turbulence equations (using the K–w (SST) model) the flow has been simulated in the blade to blade passage of a transonic compressor. In the following, in order to comparison the predicted results with experimental data, required adjustments and conditions have been taken into account.

After passing through the first transonic compressor stages, the flow becomes remarkably compressed. In such conditions, the Reynolds number considerably changes compared to the inflow Reynolds number. In the present work, it is intended to numerically investigate the effects of the inflow Reynolds number on the unique incidence, flow losses, deviation angle, and also shock position changes, in three different important states of “Minimum loss” and “Choked flow” in started conditions and “Stall operation” in unstarted conditions.

This content is only available via PDF.
You do not currently have access to this content.