Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
NARROW
Date
Availability
1-20 of 81
Paints
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
Proc. ASME. GT2020, Volume 2E: Turbomachinery, V02ET41A037, September 21–25, 2020
Paper No: GT2020-16194
Abstract
This paper presents the simultaneous application of fast-response pressure transducers and unsteady pressure-sensitive paint (unsteady PSP) for the precise determination of pressure amplitudes and phases up to 3,000 Hz. These experiments have been carried out on a low-pressure turbine blade cascade under engine-relevant conditions (Re, Ma, Tu) in the High-Speed Cascade Wind Tunnel. Periodic blade/vane interactions were simulated at the inlet to the cascade using a wake generator operating at a constant perturbation frequency of 500 Hz. The main goal of this paper is the detailed comparison of amplitude and phase distributions between both flow sensing techniques at least up to the second harmonic of the wake generator’s fundamental perturbation frequency (i.e. 1,000 Hz). Therefore, a careful assessment of the key drivers for relative deviations between measurement results as well as a detailed discussion of the data processing is presented for both measurement techniques. This discussion outlines the mandatory steps which were essential to achieve the quality as presented down to pressure amplitudes of several pascal even under challenging experimental conditions. Apart from the remarkable consistency of the results, this paper reveals the potential of (unsteady) PSP as a future key flow sensing technique in turbomachinery research, especially for cascade testing. The results demonstrate that PSP was able to successfully sense pressure dynamics with very low fluctuation amplitudes down to 8 Pa.
Proceedings Papers
Christopher C. Pilgrim, Daniel Castillo, Silvia Araguás-Rodríguez, Solon Karagiannopoulos, Jörg P. Feist, Alex Redwood, Yang Zhang, Colin Copeland, James Scobie, Carl Sangan
Proc. ASME. GT2020, Volume 5: Controls, Diagnostics, and Instrumentation; Cycle Innovations; Cycle Innovations: Energy Storage, V005T05A014, September 21–25, 2020
Paper No: GT2020-14932
Abstract
Compliance with incoming new emission standards such as Euro6d and China6b will require new approaches to the design of thermally loaded automotive components e.g. turbochargers, exhaust valves and manifolds. However, the validation of those new designs and the need for a rapid market entry will require new temperature measurement technologies to provide accurate data across the entire component. A limited number of techniques are currently available, and all have limitations in the harsh operating conditions of turbomachinery. A new technique, called Thermal History Paint (THP), has been developed to overcome these limitations to enable accurate temperature profiles to be recorded in harsh environments. There are limited publications that cover the use of this technique and this paper demonstrates the capability of the THP through the implementation on turbocharger turbine wheels. A cooled, hollow radial turbine wheel was designed, manufactured via 3D printing and tested. A solid wheel of the same external dimensions was manufactured and tested under the same conditions to act as a baseline. The THP was used to measure the temperature profile of the blade surfaces and to quantify the effectiveness of the cooling. The paint exhibited good durability through the tests of both wheels in a hot gas rig at the University of Bath. Specific calibration data were generated for the test and the repeatability of the measurements was determined to be within 8K. Both the cooled and baseline wheels were measured at many locations and the THP recorded a significantly higher temperature on the baseline solid wheel. The measured temperature profiles were in good agreement with expectation and CFD simulations. The results enable the validation of thermal models and demonstrate the capability of the new measurement technique.
Proceedings Papers
Proc. ASME. GT2020, Volume 7B: Heat Transfer, V07BT12A068, September 21–25, 2020
Paper No: GT2020-16129
Abstract
To be representative of engine conditions, a measurement of film cooling behavior on an experimental model must have certain nondimensional parameters matched, such as the freestream Reynolds number. However, the coolant flow rate must also be properly scaled between the low temperature tests and engine temperatures to accurately predict film cooling effectiveness. This process is complicated by gas property variation with temperature. Additionally, selection of the appropriate coolant flow rate parameter to scale from low to high temperatures is a topic of continued uncertainty. Furthermore, experiments are commonly conducted using thermal measurement techniques with infrared thermography (IR) but the use of pressure sensitive paints (PSPs) implementing the heat-mass transfer analogy is also common. Thus, the question arises of how the adiabatic effectiveness distributions compare between mass transfer experimental methods and thermal experimental methods and whether these two methods are sensitive to coolant flow rate parameters in different ways. In this study, a thermal technique with IR was compared to a heat-mass transfer method with a PSP on a flat plate model with a 7-7-7 film cooling hole. While adiabatic effectiveness is best scaled by accounting for specific heats with the advective capacity ratio (ACR) using thermal techniques, results revealed that PSP measurements are scaled best with the mass flux ratio (M). The difference in these methods has significant implications for engine designers that rely on PSP experimental data to predict engine thermal behavior as PSP is fundamentally not sensitive to the same highly relevant physical mechanisms to which thermal methods are sensitive.
Proceedings Papers
Proc. ASME. GT2020, Volume 7A: Heat Transfer, V07AT11A013, September 21–25, 2020
Paper No: GT2020-16151
Abstract
In aero engines the combustors are subjected to critical thermal conditions in terms of high temperatures and corrosive environment, which could affect the service life of the entire system. As well known, Thermal Barrier Coatings (TBC) and above all cooling systems represents the state-of-the-art in the nowadays protecting methods: the maximization of this beneficial effect is achieved by defining an optimal cooling arrangement and developing suitable manufacturing technologies for these systems. In modern aero-engine combustors, one of the most effective cooling scheme for liners is composed by an effusion perforation coupled with a slot system to start the film cooling. The cooling performances are deeply influenced by the mutual interactions between swirling and cooling flows. In addition, for typical Rich-Quench-Lean (RQL) combustor architectures, the injection of air provided to promoting the local break-down of the flame mixture fraction, deeply interacts with the swirled flow, generating recirculating structures capable of affecting the development of film cooling and making the design of cooling systems very challenging. A new test facility for testing effusion test plates for RQL combustors applications has been developed with the final aim of comparing different cooling strategies and at the same time to collect data for numerical model validation. The experimental set-up consists of a non-reactive planar sector rigs with 5 engine-scale swirlers fed with air up to 250 °C and 3 bar. The rig was equipped with outer/inner dilution ports, and a simple inner liner cooling scheme composed of effusion and a slot system: all these features, fed with air at ambient temperature, can be independently controlled in terms of mass flow. Using dedicated optical accesses, InfraRed (IR) camera tests were performed to retrieve overall effectiveness data imposing a temperature difference between swirling and cooling flows. To better understand those results, Pressure Sensitive Paint (PSP) technique was used to obtain reliable film effectiveness data decoupling the contribution of slot and effusion flows. The thermal characterization was supported by Particle Image Velocimetry (PIV) investigations on the median plane. Tests were performed at different pressure drops across swirler and varying the mass flows of slot and inner/outer liners. The analysis of the data highlighted the influences of the swirling flow on the overall thermal performance and the behaviour of the film cooling system.
Proceedings Papers
Proc. ASME. GT2020, Volume 7B: Heat Transfer, V07BT12A022, September 21–25, 2020
Paper No: GT2020-14640
Abstract
In the present paper the influence of geometrical deviations, related to the manufacturing process or to a different hole positioning over the vane surface, and of coolant Reynolds number on flat plate film cooling through shaped holes are experimentally investigated. Hole geometrical parameters, such as the length of the cylindrical section, hole injection angle, lateral and forward expansion angles were varied and tested for blowing ratio M values between 1.0 and 2.0, also changing the coolant Reynolds number. The dual-luminophore Pressure Sensitive Paint (PSP) technique was used for measuring the adiabatic film cooling effectiveness distribution. Compared with the standard geometry, the V-shaped hole was shown to produce a better thermal protection, especially in the near hole region. Effectiveness is strongly affected by relatively small changes in the hole geometry, like the length of the cylindrical section and the forward expansion angle. A critical coolant Reynolds number was also identified, whose value changes depending on the hole geometry.
Proceedings Papers
David Peral, Daniel Castillo, Silvia Araguas-Rodriguez, Alvaro Yañez-Gonzalez, Christopher Pilgrim, Solon Karagiannopoulos, Jörg P. Feist, Stephen Skinner
Proc. ASME. GT2019, Volume 6: Ceramics; Controls, Diagnostics, and Instrumentation; Education; Manufacturing Materials and Metallurgy, V006T24A022, June 17–21, 2019
Paper No: GT2019-92087
Abstract
The operating temperature of turbomachinery components are increasing the drive towards higher efficiency, lower fuel consumption and reduced emissions. Accurate thermal models are required to simulate the operating temperature of gas turbine components and hence predict service life or other qualities. These models require validation through measurement. Therefore, the quality of the models and prediction are dependent on the uncertainty of the measurements used to validate them. Currently available temperature measurement techniques have limitations in the harsh operating conditions inside gas turbines. Thermocouples are widely used, however, are practically very challenging to apply on rotating components and only provide point measurements. Furthermore, over 80% of the surface must be measured to validate complex thermal models. A new technique under development called thermal history paints (THP) and coatings (THC) overcomes some of these limitations. While the uncertainty estimation model described in this work is directly related to THP, the principles can be applied in general to thermographic phosphors. The paint comprises a proprietary phosphor powder and a water-based silicate binder. The paint is applied to the surface of the test component. When the component is operated the paint records the maximum temperature of exposure across the complete surface of the component. After operation, the paint is read-out using automated instrumentation. The measurements are related to temperature through calibration to deliver a high-resolution temperature profile. An uncertainty model has been developed and described for the first time. The model assesses the uncertainty sources related to the generation of the calibration data and the measurement of the component. It has been applied to determine the uncertainty of the THP in the temperature range 400–750 °C. The estimated uncertainty in this case was, for most samples, ±3–6 °C (67% confidence level). The maximum estimated uncertainty was ±6.3 °C or ±13 °C for 67% or 95% confidence levels respectively. This is believed to be well within the uncertainty of thermal models and the requirements for temperature measurements in harsh environments on gas turbines. These results combined with the fact that the THP can record the temperature at many locations demonstrates that it is a very useful tool for the validation of thermal models and lifing predictions. The uncertainty model was validated by measuring separate test samples and comparing the temperature measured from the THP with the thermocouple data from the heat treatment. The difference was within ±7 °C and the uncertainty bounds determined by the model.
Proceedings Papers
Proc. ASME. GT2019, Volume 5B: Heat Transfer, V05BT18A005, June 17–21, 2019
Paper No: GT2019-91068
Abstract
To increase gas turbine cycle efficiency it requires higher turbine inlet temperatures. Multiple cooling mechanisms are used in order to ensure the survival of hot-gas-path components. Impingement cooling is one of the most prevalent methods due to its ability to remove heat over a localized area with a high local heat transfer coefficient. However,, the same level of high heat transfer cannot be uniformly maintained over a large surface due to degradation of downstream jets by cross-flow created by post impingement flow from upstream jets. In order to avoid jet degradation and hence to enhance overall heat transfer, this study focuses on use of U-shaped guide vane inserts surrounding downstream impingement jets. A multi-objective numerical optimization approach is performed to perfect the U-shape guide vane insert where heat transfer and pressure ratio are maximized for a given coolant flow. Three models are obtained from the Pareto optimal front and compared through experimental testing. Temperature Sensitive Paint (TSP) is used to experimentally obtain the local Heat Transfer distributions for an average jet Reynolds number ranging from 75,000 to 150,000. Results show that utilizing U-shaped guided vane inserts can protect against cross-flow and thus enhance overall heat transfer at the target surface.
Proceedings Papers
Proc. ASME. GT2019, Volume 5B: Heat Transfer, V05BT19A013, June 17–21, 2019
Paper No: GT2019-90817
Abstract
Film cooling technique has been widely applied to protect gas turbine blades from high temperature combustion gases. In this study, to improve the cooling effectiveness of fan-shaped film cooling holes, the effect of the main shape parameters on the film cooling effectiveness was investigated through numerical and experimental studies. Commercial software based on Reynolds Averaged Navier-Stokes (RANS) analysis was used in the numerical study, and the PSP (Pressure Sensitive Paint) technique was used to experimentally measure the film cooling effectiveness. The design points for the optimization were derived by the Box-Behnken method, which is one of the design of experiments (DOE). Three shape parameters of a fan-shaped hole were selected as design variables: the forward expansion angle, the lateral expansion angle, and the length of cylindrical part of the hole. The area-averaged film cooling effectiveness was selected as an objective function and the optimal hole shape of each analysis was obtained using the response surface methodology (RSM). It was confirmed that the film cooling effectiveness was affected by all three variables in both numerical and experimental results. Both analyses showed similar trends of each variable on film cooling effectiveness, but the optimal hole shape obtained by each method was different. The difference is attributed to flow separation not captured by RANS based analysis and surface roughness caused by the manufacturing process and the PSP coating in experimental analysis. Notably, the experimentally optimized hole showed better film cooling effectiveness than that of the numerically optimized hole in the comparison experiments.
Proceedings Papers
Travis B. Watson, Kyle R. Vinton, Lesley M. Wright, Daniel C. Crites, Mark C. Morris, Ardeshir Riahi
Proc. ASME. GT2019, Volume 5B: Heat Transfer, V05BT19A028, June 17–21, 2019
Paper No: GT2019-92057
Abstract
The effect of film cooling hole inlet geometry is experimentally investigated in this study. Detailed film cooling effectiveness distributions are obtained on a flat plate using Pressure Sensitive Paint (PSP). The inlet of a traditional 12°-12°-12°, laidback, fanshaped hole varies from a traditional “round” opening to an oblong, racetrack shaped opening. In this study, a single racetrack inlet with an aspect ratio of 2:1 is compared to the round inlet. For both designs, the holes are inclined at θ = 30° relative to the mainstream. Blowing ratios of 0.5, 1.0, and 1.5 are considered as the coolant–to–mainstream density ratio varies between 1.0 and 4.0. For all cases, the freestream turbulence intensity is maintained at 7.5%. With the introduction of the racetrack shaped inlet, the coolant spreads laterally across the diffuse, laidback fanshaped outlet. The centerline film cooling effectiveness is reduced with the enhanced lateral spread of the coolant. However, the benefit of the shaped inlet is also observed with an increase in the area averaged film cooling effectiveness, compared to the traditional round inlet. Not only does the shaped inlet promote spreading of the coolant, it is also believed the racetrack shape suppresses turbulence within the hole allowing for enhanced film cooling protection near the film cooling holes.
Proceedings Papers
Proc. ASME. GT2019, Volume 5B: Heat Transfer, V05BT19A002, June 17–21, 2019
Paper No: GT2019-90019
Abstract
In this study a parametric analysis of the thermal performance of a nozzle vane cascade with a showerhead cooling system made of four rows of cylindrical holes was carried out by using the Pressure Sensitive Paint (PSP) technique. Coolant-to-mainstream blowing ratio ( BR ), density ratio ( DR ), main flow isentropic exit Mach number ( Ma 2is ) and turbulence intensity level ( Tu 1 ) were the considered parameters. The cascade was tested in an atmospheric wind tunnel at Ma 2is values ranging from 0.2 to 0.6, with an inlet turbulence intensity level of 1.6% and 9%, at variable injection conditions of BR = 2.0, 3.0, 4.0. Moreover, the influence of DR on the leading edge film cooling performance was investigated: testing was carried out at DR = 1.0, using nitrogen as foreign gas, and DR = 1.5, with carbon dioxide serving as coolant. In the near-hole region, higher BR and Ma 2is resulted in higher effectiveness, while higher mainstream turbulence intensity reduced the thermal coverage in between the rows of holes, whatever the BR . Further downstream along the vane pressure side, the effectiveness was negatively affected by rising BR , but positively influenced by lowering the mainstream turbulence intensity. Moreover, a decrease in DR caused a reduction in the film cooling performance, whose extent depends on the injection condition.
Proceedings Papers
Proc. ASME. GT2019, Volume 5B: Heat Transfer, V05BT19A008, June 17–21, 2019
Paper No: GT2019-90545
Abstract
A detailed analysis of film cooling performance on a double-walled effusion-cooled blade is essential for both the coolant consumption optimization and assessment of the film to offer the desired levels of the turbine blade protection. Yet there are hardly any film effectiveness studies on double-wall full-coverage film cooled turbine blades. This paper presents a detailed film cooling effectiveness study over the full surface of a double-walled effusion-cooled high-pressure turbine rotor blade using Pressure Sensitive Paint (PSP). PSP permitted a non-intrusive and conduction-errors-free means of obtaining clean and distinct local distribution of film effectiveness on the blade surface making it possible to extract valuable film cooling effectiveness performance data on the whole blade surface. Three large-scale circular pedestal double-wall blade designs with varying pedestal height, pedestal diameter and cooling hole diameter were tested in a high-speed stationary single-blade linear cascade running at engine-representative Mach and Reynolds numbers. All the blades were tested within a range of representative modern engine coolant mass flow, ṁ c to mainstream, ṁ g ratios; 1.6% < ṁ c /ṁ ∞ < 5.5%. High porosity blade exhibited a better flow distribution and was found to consistently perform the best.
Proceedings Papers
Proc. ASME. GT2019, Volume 5B: Heat Transfer, V05BT19A004, June 17–21, 2019
Paper No: GT2019-90236
Abstract
This study is concerned with the film cooling effectiveness of the flow issuing from the gap between the NGV and the transition duct on the NGV endwall, i.e. the purge slot. Different slot widths, positions and injection angles were examined in order to represent changes due to thermal expansion as well as design modifications. Apart from these geometric variations, different blowing ratios (BR) and density ratios (DR) were realized to investigate the effects of the interaction between secondary flow and film cooling effectiveness. The experimental tests were performed in a linear scale-1 cascade equipped with four highly loaded turbine vanes at the Institute of Fluid Mechanics and Fluid Machinery of the University of Kaiserslautern. The mainstream flow parameters were, with a Reynolds number of 300,000 and a Mach number (outlet) of 0.6, set to meet real engine conditions. By using various flow conditioners, periodic flow was obtained in the region of interest (ROI). The adiabatic film cooling effectiveness was determined by using the Pressure Sensitive Paint (PSP) technique. In this context, nitrogen and carbon dioxide were used as tracer gases realizing two different density ratios DR = 1.0 and 1.6. The investigation was conducted for a broad range of blowing ratios with 0.25 ≤ BR ≤ 1.50. In combination with 10 geometry variations and the aforementioned blowing and density ratio variations 100 single operating points were investigated. For a better understanding of the coolant distribution, the secondary flows on the endwall were visualized by oil dye. The measurement results will be discussed based on the areal distribution of film cooling effectiveness, its lateral spanwise as well as its area average. The results will provide a better insight into various parametric effects of gap variations on turbine vane endwall film cooling performance — notably under realistic engine conditions.
Proceedings Papers
Proc. ASME. GT2019, Volume 6: Ceramics; Controls, Diagnostics, and Instrumentation; Education; Manufacturing Materials and Metallurgy, V006T05A007, June 17–21, 2019
Paper No: GT2019-90288
Abstract
Pressure distribution in the bearing clearance of aerostatic bearings has received great attention since it has fundamental influence on the performance of the bearing. Thus, it is important to seek for accurate and global pressure distribution measurements. Pressure-sensitive paint (PSP) therefore qualifies as a promising measuring technique. It is of non-invasive nature, and hence eliminates many of the otherwise unavoidable drawbacks of conventional pressure taps. This paper introduces a conceptual test configuration aiming for employing PSP as measuring technique in narrow clearances. It is a pilot study including hardware modifications as well as considerations of an appropriate choice of paint, imaging equipment and calibration method. The effect of the coat surface quality is discussed, and a scaling methodology is proposed to transfer the high pressure conditions from machine to test rig conditions, so that PSP measurements are possible.
Proceedings Papers
Proc. ASME. GT2018, Volume 5C: Heat Transfer, V05CT19A028, June 11–15, 2018
Paper No: GT2018-76637
Abstract
In modern lean burn aero-engine combustors, highly swirling flow structures are adopted to control the fuel-air mixing and to provide the correct flame stabilization mechanisms. Aggressive swirl fields and high turbulence intensities are hence expected in the combustor-turbine interface. Moreover, to maximize the engine cycle efficiency, an accurate design of the high pressure nozzle cooling system must be pursued: in a film cooled nozzle the air taken from last compressor stages is ejected through discrete holes drilled on vane surfaces to provide a cold layer between hot gases and turbine components. In this context, the interactions between the swirling combustor outflow and the vane film cooling flows play a major role in the definition of a well performing cooling scheme, demanding for experimental campaigns at representative flow conditions. An annular three-sector combustor simulator with fully cooled high pressure vanes has been designed and installed at THT Lab of University of Florence. The test rig is equipped with three axial swirlers, effusion cooled liners and six film cooled high pressure vanes passages, for a vortex-to-vane count ratio of 1:2. The relative clocking position between swirlers and vanes has been chosen in order to have the leading edge of the central airfoil aligned with the central swirler. In this experimental work, adiabatic film effectiveness measurements have been carried out in the central sector vanes, in order to characterize the film-cooling performance under swirling inflow conditions. The Pressure Sensitive Paint technique, based on heat and mass transfer analogy, has been exploited to catch highly detailed 2D distributions. Carbon dioxide has been used as coolant in order to reach a coolant-to-mainstream density ratio of 1.5. Turbulence and five hole probe measurements at inlet/outlet of the cascade have been carried out as well, in order to highlight the characteristics of the flow field passing through the cascade and to provide precise boundary conditions. Results have shown a relevant effect of the swirling mainflow on the film cooling behaviour. Differences have been found between the central airfoil and the adjacent ones, both in terms of leading edge stagnation point position and of pressure and suction side film coverage characteristics.
Proceedings Papers
Proc. ASME. GT2018, Volume 5C: Heat Transfer, V05CT19A017, June 11–15, 2018
Paper No: GT2018-75881
Abstract
Cooling of the turbine nozzle endwall is challenging due to its complex flow field involving strong secondary flows. Increasingly-effective cooling schemes are required to meet the higher turbine inlet temperatures required by today’s gas turbine applications. Therefore, in order to cool the endwall surface near the pressure side of the airfoil and the trailing edge extended area, the spent cooling air from the airfoil film cooling and pressure side discharge slots, referred to as “phantom cooling” is utilized. This paper studies the effect of compound angled pressure side injection on nozzle endwall surface. The measurements were conducted in a high speed linear cascade, which consists of three nozzle vanes and four flow passages. Two nozzle test models with a similar film cooling design were investigated, one with an axial pressure side film cooling row and trailing edge slots; the other with the same cooling features but with compound angled injection, aiming at the test endwall. Phantom cooling effectiveness on the endwall was measured using a Pressure Sensitive Paint (PSP) technique through the mass transfer analogy. Two-dimensional phantom cooling effectiveness distributions on the endwall surface are presented for four MFR (Mass Flow Ratio) values in each test case. Then the phantom cooling effectiveness distributions are pitchwise-averaged along the axial direction and comparisons were made to show the effect of the compound angled injection. The results indicated that the endwall phantom cooling effectiveness increases with the MFR significantly. A compound angle of the pressure side slots also enhanced the endwall phantom cooling significantly. For combined injections, the phantom cooling effectiveness is much higher than the pressure side slots injection only in the endwall downstream extended area.
Proceedings Papers
Proc. ASME. GT2018, Volume 5B: Heat Transfer, V05BT13A017, June 11–15, 2018
Paper No: GT2018-76898
Abstract
Heat transfer in annuli has been widely investigated over the years. Annular channels are found in multiple industry applications, ranging from electronic equipment to nuclear reactor cooling. In order to enhance heat transfer, internal passages are augmented with roughness elements such as dimples, pimples, ribs, fins, and other features. However, the use of impingement cooling mechanism has not been utilized for such annular channels. An experimental study of impingement cooling within an annulus with the outer surface of the annulus being heated uniformly is conducted. Multiple flows as a function of Jet Reynolds number in the range of 16,000 to 46,000 are fundamentally examined. An impingement sleeve with an annular ratio of 0.92 was experimentally tested and compared to RANS numerical simulation results. Temperature Sensitive Paint (TSP) was utilized to experimentally obtain the local Heat Transfer distribution along the annular wall and close channel cap, which is normalized by the baseline annulus heat transfer distribution. Heat transfer results for the annular surface is compared with available correlations. Pressure drop across the facility is characterized at the inlet and exit of the experimental set up.
Proceedings Papers
Takaaki Kitamura, Masaharu Kameda, Wataru Watanabe, Kazutaka Horimoto, Kenta Akimoto, Akihito Akahori
Proc. ASME. GT2018, Volume 2B: Turbomachinery, V02BT44A018, June 11–15, 2018
Paper No: GT2018-76267
Abstract
It is necessary to quantitatively resolve the flow field generated in compressors at various operating conditions including the surge. In this study, fast-responding pressure-sensitive-paint (PSP) and temperature-sensitive-paint (TSP) was applied to measurement of steady and unsteady pressure and temperature fields in a turbocharger compressor. The surface pressure of a compressor impeller and the diffuser downstream of the impeller was measured under the rotating speed of 133,000 rpm with various mass flow rate of the inlet. Blue LED strobes were used as the excitation light source for PSP/TSP. The luminescence from PSP/TSP were captured by a high-speed camera. These instruments were controlled using the signal synchronized with a fixed rotation angle of the impeller, which was detected using a gap sensor installed near the impeller. The pressure was calculated from the time-series of the PSP signal. The output of PSP/TSP was compared with the signal from semiconductor pressure transducers and the thermal image taken by an infrared camera. For the analysis of the diffuser, the power spectra of the pressure field were obtained using the fast Fourier transform of the time-series data of the pressure fluctuation. The pressure field on the impeller was successfully obtained with the aid of adequate temperature compensation by TSP. It was confirmed that the time-averaged pressure on the impeller blades increased as the inlet mass flow rate was decreased. Large-amplitude points were distributed on the extension line of the impeller blades in the diffuser when the surge occurs.
Proceedings Papers
Proc. ASME. GT2018, Volume 5C: Heat Transfer, V05CT19A031, June 11–15, 2018
Paper No: GT2018-76844
Abstract
With the development of gas turbine, the secondary flow loss in vane passage is getting higher. To reduce the strength of secondary flows within vane passage, endwall 3D contouring is an effective design. Endwall 3D contouring can lead to significant changes in the secondary flow vortices, which lead to changes on jet-to-secondary flow interaction and then changes on the film cooling effectiveness. Meanwhile, the geometry configuration of the contoured endwall, such as the rising and falling on the endwall, can also have an impact on film cooling performance. As a result, the film cooling performance on contoured endwall differs from that on flat endwall. Understanding the difference in film cooling characteristics on the contoured endwall and flat endwall may help to make better endwall contouring design and better endwall film cooling arrangement. The present experiment compares the film cooling effectiveness of cylindrical hole injections at different locations on 3D contoured endwall versus flat endwall in an NGV (nozzle guide vane) passage. The measurement is performed in a low speed wind tunnel with a F-class annular sector NGV cascade. The cylindrical hole injections are located as 4 different rows at −30% axial chord, 30% axial chord, 50% axial chord and 70% axial chord. Endwall pressure distribution is measured with pressure taps by pressure sensor while film cooling effectiveness is measured using PSP (Pressure Sensitive Paint). Two density ratios with 1.0 and 1.5 and several average blowing ratios are investigated. Effects of endwall contouring, density ratio and blowing ratio on film cooling effectiveness are obtained and the results are presented and explained in this investigation.
Proceedings Papers
Proc. ASME. GT2017, Volume 5C: Heat Transfer, V05CT19A011, June 26–30, 2017
Paper No: GT2017-63740
Abstract
The interaction of flow and film-cooling effectiveness between jets of double-jet film-cooling (DJFC) holes on a flat plate is studied experimentally. The time-averaged secondary flow field in several axial positions ( X/d = −2.0, 1.0, and 5.0) is obtained through a seven-hole probe. The downstream film-cooling effectiveness on the flat plate is achieved by Pressure Sensitive Paint (PSP). The inclination angle ( θ ) of all holes is 35°, and the compound angle ( β ) is ±45°. Effects of spanwise distance ( p = 0, 0.5 d , 1.0 d , 1.5 d , 2.0 d ) between the two interacting jets of DJFC holes are studied while streamwise distance ( s ) is kept as 3 d . The blowing ratio ( M ) varies as 0.5, 1.0, 1.5, and 2.0. The density ratio ( DR ) is maintained at 1.0. Results show that the interaction between two jets of DJFC holes has different effects for different spanwise distance. For a small spanwise distance ( p/d = 0), the interaction between jets presents a pressing effect. The downstream jet is pressed down and kept attached to the surface by the upstream one. The effectiveness is not sensitive to blowing ratios. For mid spanwise distances ( p/d = 0.5 and 1.0), the anti-kidney vortex pair dominates the interaction, and pushes both of the jets down, thus leads to better coolant coverage and higher effectiveness. As spanwise distance becomes larger ( p/d ≥1.5), the pressing effect almost disappears, and the anti-kidney vortex pair effect is weaker. The jets separate from each other and the coolant coverage decreases. At higher blowing ratio, the interaction between the two jets of DJFC holes moves more downstream.
Proceedings Papers
Proc. ASME. GT2017, Volume 5C: Heat Transfer, V05CT19A012, June 26–30, 2017
Paper No: GT2017-63743
Abstract
Film cooling effectiveness distribution and its uniformity downstream of a row of film cooling holes on a flat plate are investigated by Pressure Sensitive Paint (PSP) under different density ratios. Several hole geometries are studied, including a streamwise cylindrical hole, a compound-angled cylindrical hole, a streamwise fan-shape hole, a compound-angled fan-shape hole, and double-jet film-cooling (DJFC) holes. All of them have an inclination angle ( θ ) of 35°.The compound angle (β) is 45°. The fan-shape hole has a 10° expansion in the spanwise direction. In order to have a fair comparison, the pitches are kept as 4 d for the cylindrical and the fan-shape holes, and 8 d for the double-jet film-cooling holes. The investigated uniformity of effectiveness distribution is described by a new parameter (Lateral-Uniformity, LU ) defined in this paper. Effects of density ratios ( DR = 1.0, 1.5 and 2.5) on film-cooling effectiveness and its uniformity are focused. Differences among geometries and effects of blowing ratios ( M = 0.5, 1.0, 1.5, and 2.0) are also considered. Results show that at higher density ratios, the lateral spread for discrete-hole geometries (i.e., the cylindrical and the fan-shape holes) is enhanced, and the DJFC holes is more advantageous, and the high effectiveness region near the downstream hole exit is larger. Mostly, increased lateral-uniformity is obtained at DR = 2.5 due to better coolant coverage and enhanced lateral spread, but the effects of density ratios on lateral-uniformity are not monotonic in some cases. Utilizing compound angle configuration leads to increased lateral-uniformity due to stronger spanwise motion of the jet. Generally, with higher blowing ratio, the lateral-uniformity for the discrete-hole geometries decreases due to narrower traces, while it for the DJFC holes increases due to stronger spanwise movement.