Update search
Filter
- Title
- Author
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- Issue
- Volume
- References
- Paper No
Filter
- Title
- Author
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- Issue
- Volume
- References
- Paper No
Filter
- Title
- Author
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- Issue
- Volume
- References
- Paper No
Filter
- Title
- Author
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- Issue
- Volume
- References
- Paper No
Filter
- Title
- Author
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- Issue
- Volume
- References
- Paper No
Filter
- Title
- Author
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- Issue
- Volume
- References
- Paper No
NARROW
Date
Availability
1-20 of 759
Dynamics (Mechanics)
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
Proc. ASME. GT2019, Volume 1: Aircraft Engine; Fans and Blowers; Marine; Honors and Awards, V001T01A013, June 17–21, 2019
Paper No: GT2019-90788
Abstract
Abstract Achieving the objectives of the American and European long-term air transport in terms of emission reduction requires to shift to hybrid/electric aircraft by 2050. This implies the development of distributed propulsion systems using multiple low-diameter lightly-loaded shrouded rotors, operating at high rotational speed and moderate flight Mach number. The relevance of characteristic maps of such a propulsive system is discussed in this paper. It is based on an integrative approach, that takes advantage of the two different formalisms generally found when dealing with aeronautical propulsion : either propeller diagrams (external aerodynamics) or turbomachinery maps (internal aero-dynamics). It outlines the main parameters representing the shrouded rotors performance and the parameters that drive them in a self-similar way. This is done by dimensional analysis, taking into account the geometric and operating parameters of both the rotor and the shroud and their combined variables. The self-similarity is observed with potential flow and RANS computations, which credits the proposed formalism as a powerful tool for scaling the shrouded rotors.
Proceedings Papers
Proc. ASME. GT2019, Volume 1: Aircraft Engine; Fans and Blowers; Marine; Honors and Awards, V001T09A006, June 17–21, 2019
Paper No: GT2019-91296
Abstract
Abstract Additive manufacturing represents a new frontier in the design and production of rotor machines. This technology drives the engineering research framework to new possibilities of design and testing of new prototypes, reducing costs and time. On the other hand, the fast additive manufacturing implies the use of plastic and light materials (as PLA or ABS), often including a certain level of anisotropy due to the layered deposition. These two aspects are critical, because the aero-elastic coupling and flow induced vibrations are not negligible for high aspect ratio rotors. In this work, we investigate the aeroelastic response of a small sample fan blade, printed using PLA material. Scope of the work is to study both the structure and flow field dynamics, where strong coupling is considered on the simulation. We test the blade in two operating points, to see the aero-mechanical dynamics of the system in stall and normal operating condition. The computational fluid-structure interaction (FSI) technique is applied to simulate the coupled dynamics. The FSI solver is developed on the base of the finite element stabilized formulations proposed by Tezduyar et al. We use the ALE formulation of RBVMS-SUPS equations for the aerodynamics, the non-linear elasticity is solved with the Updated Lagrangian formulation of the equations of motion for the elastic solid. The strong coupling is made with a block-iterative algorithm, including the Jacobian based stiffness method for the mesh motion.
Proceedings Papers
Proc. ASME. GT2019, Volume 2A: Turbomachinery, V02AT45A014, June 17–21, 2019
Paper No: GT2019-91008
Abstract
Abstract As a consequence of the increasing share of renewable energy sources in present-day electrical grid systems, time variations of the power demand for fossil fuel plants can become more sudden. Therefore, an ability to respond to sudden load changes becomes an important issue for power generation gas turbines. This paper describes a real-time model for predicting the transient performance of gas turbines. The method includes basic transient phenomena, such as volume packing and the heat transfer between the working fluid and the structural elements. The dynamics of components are quantified by solving ordinary differential equations with appropriate initial and boundary conditions. Compressor and turbine operating points are determined from corresponding performance maps previously calculated using sophisticated aerodynamic, through-flow codes. This includes a sufficient number of such characteristics to account for the variations in speed and machine geometry. The developed dynamic model was verified by comparison of simulation results with experimentally recorded operating parameters for a real engine. This includes the start-up sequence and the change of load. Additional simulation covers the system response to a step increase in fuel flow. The simulation is carried out faster than the real process.
Proceedings Papers
Proc. ASME. GT2019, Volume 2A: Turbomachinery, V02AT45A027, June 17–21, 2019
Paper No: GT2019-92041
Abstract
Abstract A preliminary 2D numerical investigation of the active control of unsteady cavitation by means of one single synthetic jet actuator (SJA) is presented. The SJA has been applied to hinder the intrinsic instabilities of a cloud cavitating flow of water around a NACA 0015 hydrofoil with an angle of attack of 8° and ambient conditions. It has been placed inside the inception region at a distance of 16% of the chord from the leading edge. Concerning the numerical approach, a Eulerian homogeneous mixture/mass transfer model has been used, in combination with an extended Schnerr-Sauer cavitation model and a Volume of Fluid (VOF) interface tracking method. The synthetic jet has been modeled by means of a user-defined velocity boundary conditions based on a sinusoidal waveform. A sensitivity analysis has been first performed in order to evaluate the influence of the main control parameters, namely the momentum coefficient C μ , the dimensionless frequency F + and the jet angle α jet . By combining the cavitating vapor content and the impact on the hydrodynamic performance, the best performing SJA configuration has been retrieved. Then, a deeper analysis of the vapor cavity dynamics and the vorticity field has been conducted in order to understand the modification of the main flow produced by the synthetic jet. The best SJA configuration was observed at C μ = 0.0002, F + = 0.309 and α jet = 90°, which led to a reduction of both the average vapor content and the average torsional load in the measure of 34.6% and 17.8% respectively. A reduction of the average pulsation frequency of the pressure upstream confirmed the beneficial effect of the SJA. The analysis of the coupled dynamics between vapor cavity-vorticity and their POD-based modal structures highlighted that the benefit of the SJA lies on preventing the growth of a thick sheet cavity which tends to cause the development of the highly cavitating cloud dynamics after the cavity breakup. This is mainly due to an additional vorticity close to the hydrofoil surface just downstream the SJA, as well as a local pressure modification close the SJA during the blowing stroke.
Proceedings Papers
Proc. ASME. GT2019, Volume 2C: Turbomachinery, V02CT41A015, June 17–21, 2019
Paper No: GT2019-90352
Abstract
Abstract The accuracy with which experimental investigations of turbine performance need to be undertaken require either a semi- or fully-automated control of the operating point as any variation can compromise the reliability of the measurements. Fundamentally, both the mass flow rate through the turbine and the applied brake torque need to be adjusted in real-time so that the required operating point is maintained. This paper describes the development of a time accurate computational simulation of the unsteady dynamics of a large-scale, low-speed turbine facility when its operating point is determined by a full-authority control system. The motivation for the development of the computational simulation was to be able to safely undertake parametric studies to refine the control system and to investigate the cause of monotonic excursions of the operating point which were observed after a major rebuild. The monotonic excursions of the turbine operating point could only be reproduced by the computational simulation after an unsteady aerodynamic coupling between the turbine exit flow and the downstream centrifugal fan had been incorporated. Based on this observation a honeycomb was installed upstream of the fan in the turbine facility. This eliminated the monotonic excursions and the fractional noise of the operating point was reduced by 37%. When combined with an earlier refinement of the control system the factional noise was reduced by a factor of three. This enables the number of repeated measurements to be reduced by nine and still obtain the same quality of data.
Proceedings Papers
Proc. ASME. GT2019, Volume 2D: Turbomachinery, V02DT47A013, June 17–21, 2019
Paper No: GT2019-91215
Abstract
Abstract Erosion of compressor and turbine blades operating in extreme environment fouled with sand particles, ash or soot is a serious problem for gas turbine manufacturers and users. Indeed, operation of a gas turbine engine in such hostile conditions leads to drastic degradation of the aerodynamic performance of the components, mostly through surface roughness modification, tip clearance height increase or blunting of blade leading edges. To evaluate associated risks, the computation of particle trajectories and impacts through multiple turbomachinery stages by Computational Fluid Dynamics (CFD) seems a decent path but remains a challenge. The numerical prediction of complex turbulent flows in compressors and turbines is however necessary in such a context and validations are still required. Recently, Large-Eddy Simulation (LES) has shown promising results for compressor and turbine configurations for a wide range of operating conditions at an acceptable cost. With this in mind, this article presents the assessment of a LES solver able to treat turbomachine configurations to predict solid particle motion. To do so, the governing equations of particle dynamics are introduced using the Lagrangian formalism and are solved to compute locations and conditions of impact, namely particle velocity, angle and radius. The fully unsteady and coupled strategy is applied to blade geometries for studying the main areas and conditions of impacts obtained with LES. For comparison, a one-way coupling computation based on a mean steady flow field where only the Lagrangian particles are advanced in time is performed to evaluate the gain and drawbacks of both methods.
Proceedings Papers
Proc. ASME. GT2019, Volume 3: Coal, Biomass, Hydrogen, and Alternative Fuels; Cycle Innovations; Electric Power; Industrial and Cogeneration; Organic Rankine Cycle Power Systems, V003T06A006, June 17–21, 2019
Paper No: GT2019-91021
Abstract
Abstract Compressor dynamics were studied in a gas turbine – fuel cell hybrid power system having a larger compressor volume than traditionally found in gas turbine systems. This larger compressor volume adversely affects the surge margin of the gas turbine. Industrial acoustic sensors were placed near the compressor to identify when the equipment was getting close to the surge line. Fast Fourier transform (FFT) mathematical analysis was used to obtain spectra representing the probability density across the frequency range (0–5000 Hz). Comparison between FFT spectra for nominal and transient operations revealed that higher amplitude spikes were observed during incipient stall at three different frequencies, 900, 1020, and 1800 Hz. These frequencies were compared to the natural frequencies of the equipment and the frequency for the rotating turbomachinery to identify more general nature of the acoustic signal typical of the onset of compressor surge. The primary goal of this acoustic analysis was to establish an online methodology to monitor compressor stability that can be anticipated and avoided.
Proceedings Papers
Rafael Guédez, José García, Antti Nuutinen, Giovanni Graziano, Justin Chiu, Alessandro Sorce, Luca Piantelli, Alberto Traverso, Björn Laumert
Proc. ASME. GT2019, Volume 3: Coal, Biomass, Hydrogen, and Alternative Fuels; Cycle Innovations; Electric Power; Industrial and Cogeneration; Organic Rankine Cycle Power Systems, V003T06A007, June 17–21, 2019
Paper No: GT2019-91036
Abstract
Abstract In the pursuit of increasing their profitability, the design and operation of combined cycle power plants needs to be optimized for new liberalized markets with large penetration of renewables. A clear consequence of such renewable integration is the need for these plants for being more flexible in terms of ramping-up periods and higher part-load efficiencies. Flexibility becomes an even clearer need for combined heat and power plants to be more competitive, particularly when simultaneously following the market hourly price dynamics and varying demands for both the heat and the electricity markets. In this paper, three new plant layouts have been investigated by integrating different storage concepts and heat-pump units in key sections of a traditional plant layout. The study analyses the influence that market has on determining the optimum layouts for maximizing profits in energy-only markets (in terms of plant configuration, sizing and operation strategies). The study is performed for a given location nearby Turin, Italy, for which hourly electricity and heat prices, as well as meteorological data, have been gathered. A multi-parameter modeling approach was followed using KTH’s in house techno-economic modeling tool, which uses time-dependent market data, e.g. price and weather, to determine the trade-off curves between minimizing investment and maximizing profits when varying critical size-related power plant parameters e.g. installed power capacities and storage size, for pre-defined layouts and operating strategies. A comparative analysis between the best configurations found for each of the proposed layouts and the reference plant is presented in the discussion section of the results. For the specific case study set in northern Italy, it is shown that the integration of a pre-cooling loop into baseload-like power-oriented combined cycle plants is not justified, calling for investigating new markets and different operating strategies. Only the integration of a heat pump alone was shown to improve the profitability, but within the margin of error of the study. Alternatively, a layout where district heating supply water is preheated with a combination of a heat pump with hot thermal tank was able to increase the internal rate of return of the plant by up to 0.5%, absolute, yet within the error margin and thus not justifying the added complexity in operation and in investment costs. All in all, the analysis shows that even when considering energy-only market revenue streams (i.e. heat and electricity sells) the integration of heat pump and storage units could increase the profitability of plants by making them more flexible in terms of power output levels and load variations. The latter is shown true even when excluding other flexibility-related revenue streams. It is therefore conclusively suggested to further investigate the proposed layouts in markets with larger heat and power price variations, as well as to investigate the impact of additional control logics and dispatch strategies.
Proceedings Papers
Proc. ASME. GT2019, Volume 3: Coal, Biomass, Hydrogen, and Alternative Fuels; Cycle Innovations; Electric Power; Industrial and Cogeneration; Organic Rankine Cycle Power Systems, V003T03A017, June 17–21, 2019
Paper No: GT2019-91379
Abstract
Abstract Increasing demand for energy and the need for diversification of fuels used in gas turbine power generation is continuing to drive forward the development of fuel-flexible combustion systems, with particular focus on biomass derived sustainable fuels. The technical challenges arising from burning sustainable fuels are largely associated with the change in the chemical, thermal and transport properties of these fuels due to the variation of the constituents and their impact on the performance of the combustor including emissions, static and dynamic stabilities. There is a lack of detailed understanding on the effect of fuel composition on the flame sensitivity to acoustic and flow perturbations. This paper describes an experimental study investigating the acoustic flame response of simulated biogas (methane/carbon dioxide/air mixtures) turbulent premixed flames. The effect of variation in carbondioxide, CO 2 , content on the flame response was quantified. Special emphasis was placed on understanding the dependence of this flame response on the amplitude of the acoustic forcing. The flame was subjected to strong velocity perturbations using loud speakers. It was observed that the addition of CO 2 had considerable influence on the magnitude of heat release response. The magnitude and the phase of flame describing function indicated that the mechanism of saturation in these flames for all conditions tested were the same. The difference in magnitude could been attributed to dilution effect and hence further investigation were carried out with N 2 and Ar to clarify the role of CO 2 . The results indicate that the thermal capacity of the diluent gases could be playing a significant role in nonlinear flame dynamics.
Proceedings Papers
Proc. ASME. GT2019, Volume 3: Coal, Biomass, Hydrogen, and Alternative Fuels; Cycle Innovations; Electric Power; Industrial and Cogeneration; Organic Rankine Cycle Power Systems, V003T08A005, June 17–21, 2019
Paper No: GT2019-91587
Abstract
Abstract Since the advent of premix combustion technology in industrial gas turbines, regular manual combustion tuning and engine adjustments have been necessary to maintain engines within emission regulatory limits and to control combustion dynamics (pulsations) for hardware integrity. The emissions and pulsation signatures of premix combustors are strongly driven by ambient conditions, engine performance, degradation and fuel composition. As emissions limits became more stringent over the years, higher combustion dynamics were encountered and challenges to maintain acceptable settings after yearly combustion inspections were regularly encountered. This challenge was further increased as sites operating advanced Gas Turbines (GT) eliminated Combustion Inspections (CI) and required uninterrupted generation at optimum settings for up to three years. The case for automated tuning systems became evident for the Industrial Gas Turbine (IGT) market in the mid 2000’s and different IGT manufacturers and service providers began developing them. Power Systems Manufacturing (PSM) developed the AutoTune (AT) system in 2008 and has since installed it in over fifty units, accumulating close to a million hours of operation. The history of PSM’s AT system development as well as a description of its fundamental principles and capabilities are discussed. The power generation market is changing rapidly with the injection of renewables, thus driving the demand for operational flexibility, the design of PSM’s multi-platform compatible, AutoTune system; allowing for increased peak power, extended turndown and transient tuning is discussed. The paper also describes, how, using the same tuning principles, the application for an AutoTune system can be extended to the Balance Of Plant (BOP) equipment.
Proceedings Papers
Proc. ASME. GT2019, Volume 3: Coal, Biomass, Hydrogen, and Alternative Fuels; Cycle Innovations; Electric Power; Industrial and Cogeneration; Organic Rankine Cycle Power Systems, V003T08A008, June 17–21, 2019
Paper No: GT2019-91973
Abstract
Abstract Dry, low NO x gas turbines are extremely complex machines that are heavily relied upon in the power industry as baseload, cycling, and/or peaking units. These low-emission gas turbines present potential maintenance and monitoring challenges due to the intrinsically harsh pressure and temperature environments, which make diagnostics and prognostic capabilities extremely difficult. One such challenge involves understanding and interpreting combustion dynamics data. This paper focuses on gas turbine combustion dynamics monitoring (CDM) and describes an algorithm to determine combustor health based upon dynamic pressure. The ongoing CDM and diagnostic work has progressed from taking basic binned FFT data and transforming this data to statistically-based health indicators that can be continuously calculated to determine combustion system anomalies. These anomalies can be detected hours, days, and sometimes even weeks before passive CDM alarm levels are reached, thus, giving additional time to plan for shutdown, inspection, and repair. The paper will discuss real-time observed successes and challenges associated with combustor health monitoring, including sensor health determination and factors associated with the non-linear nature of combustion dynamics. Overall, this work is helping to better alleviate the user’s “black box” perspective of combustion dynamics monitoring systems through automated, real-time interpretation for combustion system health for can annular gas turbines.
Proceedings Papers
Proc. ASME. GT2019, Volume 4A: Combustion, Fuels, and Emissions, V04AT04A056, June 17–21, 2019
Paper No: GT2019-90878
Abstract
Abstract In this paper, high-fidelity large eddy simulations (LES) along with flamelet based combustion models are assessed to predict combustion dynamics in low-emissions gas turbine combustor. A model configuration of a single element lean-direct-injection (LDI) combustor from Purdue University [1] is used for the validation of simulation results. Two combustion models based on the flamelet concept, i.e., steady diffusion flamelet (SDF) model and flamelet generated manifold (FGM) model are employed to predict combustion instabilities. Simulations are carried out for two equivalence ratios of φ = 0.6, and 0.4 and the results in the form of mode shapes, peak to peak pressure amplitude and power spectrum density (PSD) are compared with the experimental data of Huang et al. [1]. The effect of variation in the time step size for transient simulations is also studied. The time step sizes corresponding to Acoustic Courant numbers of 4, 8 and 16 are tested. Further, two numerical solver options, i.e., pressure based segregated solver and pressure based coupled solver are used in understanding their effect on the solution convergence regarding the number of time steps required to reach the limit cycle of the pressure oscillations. An additional test for reducing the overall simulation time is explored using a truncated (half) calculation domain and applying an appropriate acoustic impedance boundary condition at the truncated location. The simulation results from this test for the equivalence ratio of φ = 0.6 are compared with the simulation results from the corresponding full domain test. Overall, the simulation results compare well with the experimental data and trends are captured accurately. A clear dominant acoustic mode of 4L is observed for the equivalence ratio of 0.6 that compares well with the experimental data. For the equivalence ratio of 0.4, simulation results show that there is no dominant frequency and the energy is distributed among the first five modes. It is consistent with the observations in the experiments. Both combustion models (SDF and FGM) used in this study capture the combustion instabilities accurately. It builds confidence in flamelet based combustion models for the use in combustion instability modeling which is traditionally done using finite rate chemistry models based on reduced kinetics.
Proceedings Papers
Proc. ASME. GT2019, Volume 4A: Combustion, Fuels, and Emissions, V04AT04A020, June 17–21, 2019
Paper No: GT2019-90327
Abstract
Abstract In this study, an experimental facility with two combustion cans was built and successfully replicated the field boundary conditions for heavy duty gas turbine combustors. Each combustor consisted of multiple Dry Low NOx (DLN) fuel nozzles, representative of a real gas turbine combustor headend. The two combustor cans were connected at the combustor exits to simulate the cross-talk area in a can-annular combustor configuration of a gas turbine. Moreover, a choked boundary condition, at the exit section of the cross-talk area, simulated the first-stage nozzle of a turbine. The push-push and push-pull tones were excited by varying the fuel flow splits among the various fuel nozzles in each combustor can. The thermoacoustic behavior of the two-can combustor was modeled using both a reduced-order network approach and a high-fidelity CFD approach. The modeling was carried out to guide rig design and to predict the frequency and relative amplitudes of the various dynamics modes from the experiments. Various combustion dynamics mitigation strategies were demonstrated via the experiments in reducing both push-pull and push-push dynamics tones. Moreover, stable combustor operation was demonstrated with complete mitigation of all dynamics tones.
Proceedings Papers
Proc. ASME. GT2019, Volume 4A: Combustion, Fuels, and Emissions, V04AT04A045, June 17–21, 2019
Paper No: GT2019-90793
Abstract
Abstract This paper discusses the use of LES to predict the performance of an annular combustion chamber in stable operating conditions and in presence of self-exited dynamics. The availability of high-accuracy data taken in a full-scale combustion test facility allowed an extensive validation of the prediction capability. The analysis focuses on a small size heavy duty annular gas turbine whose size allows to test and compute the entire 360° combustion chamber. The comparison with measurements confirms that, if the correct operating conditions are implemented, LES is capable to discern between stable and unstable operating conditions, as well as predict several other engineering relevant parameters, although the model is sometime affected by a limited shift in frequency. The post processing of LES results in presence of combustion dynamics is not a trivial task. Here the results of the simulations have been post-processed by means of a triple decomposition method to determine a mean flow, a deterministic unsteady flow at the main instability frequency and a turbulent stochastic flow. Such decomposition indicated the instability triggering mechanism together with the cross-talk mechanism between different components. This approach is currently used for design phase, while further validation is on-going to include different geometries and operating conditions with the goal of reducing both risks and number of tests.
Proceedings Papers
Proc. ASME. GT2019, Volume 4A: Combustion, Fuels, and Emissions, V04AT04A004, June 17–21, 2019
Paper No: GT2019-90140
Abstract
Abstract This paper demonstrates that a Large Eddy Simulation (LES) combustion model based on tabulated chemistry and Eulerian stochastic fields can successfully describe the flame dynamics of a premixed turbulent swirl flame. The combustion chemistry is tabulated from one-dimensional burner-stabilized flamelet computations in dependence of progress variable and enthalpy. The progress variable allows to efficiently include a detailed reaction scheme, while the dependence on enthalpy describes the effect of heat losses on the reaction rate. The turbulence-chemistry interaction is modeled by eight Eulerian stochastic fields. A LES of a premixed swirl burner with a broadband velocity excitation is performed to investigate the flame dynamics, i.e. the response of heat release rate to upstream velocity perturbations. In particular, the flame impulse response and flame transfer function are identified from LES time series data. Simulation results for a range of power ratings are in good agreement with experimental data.
Proceedings Papers
Proc. ASME. GT2019, Volume 4A: Combustion, Fuels, and Emissions, V04AT04A051, June 17–21, 2019
Paper No: GT2019-90834
Abstract
Abstract Gas turbine combustors are prone to undesirable combustion dynamics in the form of thermoacoustic oscillations. Analysis of the stability of thermoacoustic systems in the frequency domain leads to nonlinear eigenvalue problems; here, ‘nonlinear’ refers to the fact that the eigenvalue, the complex oscillation frequency, appears in a nonlinear fashion. In this paper, we employ a non-iterative strategy based on contour integration in the complex eigenvalue plane, which returns all eigenvalues inside the contour. An introduction to the technique is given, and is complemented with guidelines for the specific application to thermoacoustic problems. Two prototypical nonlinear eigenvalue problems are considered: a network model of the classical Rijke tube with an analytic flame response model and a finite element discretization of an annular model combustor with an experimental flame transfer function. Computation of all eigenvalues in a domain of interest is vital to assess stability of these systems. We demonstrate that this is generally challenging for iterative strategies. An eigenvalue solver based on contour integration, in contrast, provides a reliable, non-iterative method to achieve this goal.
Proceedings Papers
Proc. ASME. GT2019, Volume 4A: Combustion, Fuels, and Emissions, V04AT04A053, June 17–21, 2019
Paper No: GT2019-90856
Abstract
Abstract Modern gas turbines usually adopt very lean premixed flames to meet the current strict law restrictions on nitric oxides emissions. In such devices, strong combustion instabilities and blow-off susceptibility often prevent from achieving a stable flame in leaner conditions. Numerical models to predict the lean blow-off in turbulent flames are essential to prevent such instabilities, but the simulation of blow-off still represents a challenge, requiring the appropriate modelling for the turbulence-chemistry interactions and the highly transient behaviour of the flame near the extinction limit. The present work explores the capabilities of the widely-used Flamelet Generated Manifold model in predicting the lean blow-off of a turbulent swirl-stabilized premixed flame within LES framework. An atmospheric premixed methane-air flame, experimentally studied at the University of Cambridge, is firstly analyzed in three operating conditions approaching blow-off to validate the numerical setup. An extended Turbulent Flame Closure (TFC) model, implemented within the FGM framework in Fluent to introduce the effect of stretch and heat loss on the flame, reproduces the evolution of the key flame characteristics. Then, the chosen setup is used to study the blow-off inception and the dynamics in two conditions with different flow rate. An accelerated numerical procedure with progressive step reductions of equivalence ratio is used to trigger the blow-off. The extinction equivalence ratio is predicted quite accurately, showing that the Extended TFC is suitable for the study of the blow-off, without an increase in computational cost. The validity of the model could be extended, allowing the study of lean blow-off in realistic conditions and complex flames of gas turbine combustors.
Proceedings Papers
Proc. ASME. GT2019, Volume 4A: Combustion, Fuels, and Emissions, V04AT04A054, June 17–21, 2019
Paper No: GT2019-90870
Abstract
Abstract The effects of the laminar burning velocity (S L ), on the transfer functions of propane-air and methane-air swirl flames is experimentally investigated. Five equivalence ratios for each fuel are selected, to yield different values of S L . The flame transfer function (FTF), is obtained by comparing the velocity fluctuations of the incoming flow, measured with a hot wire, to the heat release rate oscillations, collecting OH* chemiluminescence with a photomultiplier tube. Phase-locked images of OH* chemiluminescence are also acquired to analyze the flame dynamics during the forcing cycle. The unforced velocity fields are measured by particle image velocimetry to assess the effects of S L on the flow fields. Changing the laminar burning velocity affects mainly the gain around 176 Hz and 336 Hz. This paper focuses on 336 Hz. The flame vortex roll-up is recognized as a key parameter controlling the gain of the FTF around 336 Hz. The analysis highlights that S L influences the gain response around 336 Hz in two competing ways: first, it enhances the flame vortex roll-up and second, it affects the stabilization distance of the flame, which influences the vortex generated by acoustic forcing.
Proceedings Papers
Proc. ASME. GT2019, Volume 4A: Combustion, Fuels, and Emissions, V04AT04A012, June 17–21, 2019
Paper No: GT2019-90239
Abstract
Abstract The results of an experimental study on the influence of the purge air mass flow and the acoustic pressure in an annular combustor test rig on the temperature distribution in resonators with perforated plates at the exit are provided in the paper. The amplitude of the acoustic pressure in the combustor is found to have a high impact on the mean temperature and thus on the performance of the resonators, which originates primarily from the temperature sensitivity of the effective eigenfrequency. In the experiments the temperature in the cavity of one of the resonators is spatially and temporally resolved at 13 locations. The dependence of the mean temperature change on the combustor amplitudes and the purge air mass flow is measured quantitatively. In addition, the axial temperature gradient of the resonator is resolved. The mean temperature changes up to 8% depending on the level of siren forcing. Using acoustic pressure data from the cavity, the velocity of the hot gas jets periodically entering the resonator is calculated. If high amplitudes occur in the combustor and there is no adequate purge air flow in the resonators then hot gas ingestion into the cavity of the resonator occurs, leading to detuning of the resonator and the breakdown of its performance. Once hot gas ingestion occurs, the resonator quickly heats up within a few seconds as the generation of the mixture of hot gas and purge air requires only a low number of cycles. This leads to a thermal runaway of the frequency range of the resonator with high damping. When the combustor returns to quiet operation, a cooling phase with two different time constants is observed.
Proceedings Papers
C. P. Premchand, Nitin B. George, Manikandan Raghunathan, Vishnu R. Unni, R. I. Sujith, Vineeth Nair
Proc. ASME. GT2019, Volume 4B: Combustion, Fuels, and Emissions, V04BT04A041, June 17–21, 2019
Paper No: GT2019-91713
Abstract
Abstract Experiments are performed in a partially-premixed bluff-body stabilized turbulent combustor by varying the mean flow velocity. Simultaneous measurements obtained for unsteady pressure, velocity and heat release rate are used to investigate the dynamic regimes of intermittency (10.1 m/s) and thermoacoustic instability (12.3 m/s). Using wavelet analysis, we show that during intermittency, modulation of heat release rate occurring at the acoustic frequency f a by the heat release rate occurring at the hydrodynamic frequency f h results in epochs of heat release rate fluctuations where the heat release is phase locked with the acoustic pressure. We also show that the flame position during intermittency and thermoacoustic instability are essentially dictated by saddle point dynamics in the dump plane and the leading edge of the bluff-body.