Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
NARROW
Date
Availability
1-20 of 129
Diesel engines
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
Proc. ASME. GT2020, Volume 8: Industrial and Cogeneration; Manufacturing Materials and Metallurgy; Marine; Microturbines, Turbochargers, and Small Turbomachines, V008T17A007, September 21–25, 2020
Paper No: GT2020-15962
Abstract
This paper proposes a novel cogeneration system based on Kalina cycle and absorption refrigeration system to meet the design requirements of China State Shipbuilding Corporation, which is efficiently satisfy the power and cooling demands of a maritime ship at the same time. Unlike most of the combined systems, this cogeneration system is highly coupled and realizes cogeneration without increasing the system complexity too much. The basic ammonia mass fraction of this novel system is increased, so that the ammonia concentration of ammonia-water steam from the separator can be higher, which contributes to lower refrigerating temperature and thus less heat loss in the distillation process. In addition, higher ammonia concentration solution makes overheating easier, which improves the thermal efficiency. Moreover, the system has two recuperators to make further improvement of the thermal efficiency. Thermodynamic models are developed to investigate the system performance and parametric analysis is conducted to figure out the effects of including working fluid temperature at the outlet of the evaporator, working fluid temperature at superheater outlet, mass fraction of ammonia in basic solution, turbine inlet pressure, temperature of cooling water at the inlet of condensers and the refrigeration evaporation temperature on the system performance. Furthermore, the cogeneration system is optimized with genetic algorithm to obtain the best performance, which achieves 333.00kW of net power output, 28.83 kW of cooling capacity and 21.81% of thermal efficiency. Finally, the performance of the proposed system is compared with an optimized recuperative organic Rankine cycle (ORC) system and an optimized Kalina cycle system 34 (KCS34) using the same heat source. The results show that the thermal efficiency and power output of the novel cogeneration system is 3.89% and 1.05% higher than that of the recuperative ORC system and KCS34 system respectively.
Proceedings Papers
Proc. ASME. GT2020, Volume 8: Industrial and Cogeneration; Manufacturing Materials and Metallurgy; Marine; Microturbines, Turbochargers, and Small Turbomachines, V008T20A006, September 21–25, 2020
Paper No: GT2020-14643
Abstract
A turbocharger retrofitting platform utilizing 1D models for calculating turbomachinery components maps and a fully coupled process for integration with the turbomachinery components and the diesel engine, is presented. The platform has been developed with two modes of operation, allowing the retrofitting process to become fully automatic. In the first mode, available turbo-components are examined, in order to select the one that best matches the entire engine system, aiming to retain or improve the diesel engine efficiency. In the second mode, an optimization procedure is employed, in order to redesign the compressor to match the entire system in an optimum way. Dimensionless parameters are used as optimization variables, for a given compressor mass flow and power. A retrofitting case study is presented, where three retrofitting options are analyzed (compressor retrofit, turbocharger retrofit and compressor redesign). In the first and second option, turbocharger retrofitting is carried out, using available turbo-components. It is shown that initial performance cannot be reconstituted using off-the-self solutions. In the third option, compressor designing is performed, using the optimization mode, in order to provide an improved retrofitting solution, aiming to at least reconstituting the original diesel engine performance. Finally, a CFD analysis is carried out, in order to validate the compressor optimization tool capability to capture the performance trends, based on geometry variation.
Proceedings Papers
Ryan C. McGowan, David W. Fellows, Daniel J. Bodony, Jovany R. Mojica, James J. Pieri, Chol-Bum M. Kweon, Joseph A. Gibson, Rik D. Meininger, Marshall R. Musser
Proc. ASME. GT2020, Volume 8: Industrial and Cogeneration; Manufacturing Materials and Metallurgy; Marine; Microturbines, Turbochargers, and Small Turbomachines, V008T20A022, September 21–25, 2020
Paper No: GT2020-15661
Abstract
To investigate the effect of altitude on vibrations in a turbocharger, an aircraft compression-ignition engine was operated in both a sea level cell and an altitude chamber up to 25,000 ft (7620 m). The turbocharger was instrumented with a nonintrusive stress measurement system to analyze the frequencies, magnitudes, and critical speeds of the blade bending modes as the ambient pressure, ambient temperature, and engine power varied. The measurements were also compared to data from accelerometers mounted on the compressor housing. At sea level conditions, the largest deflection amplitudes were associated with excitations of the first blade bending mode. These deflections grew in amplitude as the altitude increased and the turbocharger/engine worked harder to produce the required pressure rise and power. There was also evidence of a higher-order mode being excited at elevated altitudes. By understanding the factors contributing to resonance and flutter in aircraft turbomachinery, modeling and prediction tools can be improved to update operating envelopes for current designs and minimize these phenomena in future, aviation-specific designs.
Proceedings Papers
Proc. ASME. GT2020, Volume 9: Oil and Gas Applications; Organic Rankine Cycle Power Systems; Steam Turbine, V009T22A003, September 21–25, 2020
Paper No: GT2020-15314
Abstract
In the present work, a dynamic model has been developed for the small-scale high-temperature ORC experimental test rig at the LUT University that utilizes waste heat from a heavy-duty diesel engine exhaust. The experimental facility consists of a high-speed Turbogenerator, heat exchanger components such as recuperator, condenser, and evaporator with a pre-feed pump to boost the working fluid pressure after the condensation process constituting a cycle. The turbogenerator consists of a supersonic radial-inflow turbine, a barske type main-feed pump, and a permanent magnet type generator components connected on a single shaft. Octamethyltrisiloxane (MDM) is the chosen organic working fluid in this cycle. Matlab-Simulink environment along with the open-source thermodynamic and transport database Cool-Prop has been chosen for calculating the thermodynamic properties of the dynamic model. A functional parameter approach has been followed for modeling each block component by predefined input and output parameters, aimed at modeling the performance characteristics with a limited number of inputs for both design and off-design operations of the cycle. The dynamic model is validated with the experimental data in addition to the investigation of exhaust gas mass flow regulation that establishes a control strategy for the dynamic model.
Proceedings Papers
Proc. ASME. GT2019, Volume 4B: Combustion, Fuels, and Emissions, V04BT04A052, June 17–21, 2019
Paper No: GT2019-91971
Abstract
Primary energy sources for aviation gas turbines as well as direct-injection gasoline and diesel engines come in the form of liquid hydrocarbon fuels. These liquid fuels are atomized and mixed with air, prior to highly turbulent combustion and heat release processes inside engine hardware. Designing more efficient and cleaner gas turbine engines is hence dependent on the in-depth understanding of spray formation, mixing, heat release, combustion dynamics, and pollutant formation pathways in liquid-fuel spray flames. As compared to gaseous fuels, the additional steps of atomization, dispersion, and evaporation prior to turbulent mixing need to be considered for a variety of liquid fuels to enable fuel-flexible operation of these combustion hardware. Such studies can be largely facilitated by advanced laser diagnostics applied to simplified piloted liquid-spray flame configurations that can also be numerically modeled using well-defined boundary conditions. In this work, a modified configuration of a fuel-flexible piloted liquid-spray flame apparatus is used for detailed laser diagnostics studies using hydroxyl (OH) planar imaging. The configuration consists of a modified McKenna flat-flame burner fitted with a direct-injection high-efficiency nebulizer. OH radical is a primary marker of the reaction zone and a key indicator of the heat release process in flames. OH is abundant in the high-temperature combustion regions providing high signal-to-noise ratio single-laser-shot images revealing flame dynamics and instabilities. Therefore, OH planar laser-induced fluorescence (PLIF) is employed to characterize the dynamic structures of a range of piloted liquid-spray flames operated with methanol (CH 3 OH), n -Heptane (C 7 H 16 ), iso -Octane (C 8 H 18 ), dodecane (C 12 H 26 ), gasoline (C 4 –C 12 ), diesel (C 12 –C 20 ), and kerosene (C 6 –C 16 ). Single-shot and averaged OH-PLIF images show the presence of strong turbulence in the core region above the surface of the McKenna burner. The reaction zone mainly occurs around the periphery of this region, then it spreads more uniformly due to evaporation of liquid droplets downstream of the spray flame. Two-color OH PLIF thermometry in liquid spray flames operated with gasoline, diesel and kerosene, has been shown that the combustion temperature is in the range of 1200–2000 K. Overall, OH PLIF has been demonstrated to be an efficient approach for dynamic structures and temperature measurements in piloted liquid-spray flames operated with realistic fuels.
Proceedings Papers
Proc. ASME. GT2019, Volume 2B: Turbomachinery, V02BT43A002, June 17–21, 2019
Paper No: GT2019-90554
Abstract
In marine diesel engines, transonic centrifugal compressors are widely used due to their capabilities to: 1) downsize engines by increasing output power; 2) cause less fuel consumption; 3) enhance the combustion efficiency. Apart from the traditional requirements such as good choke and stall margin, high boosting pressure ratio, and high stage efficiency, it is also necessary to reduce the turbocharger noise as much as possible for a more comfortable working environment. The most effective way is to reduce the compressor noise at the source, i.e. the compressor impeller itself must produce less aerodynamic noise rather than using any silencers. In this paper, we present a redesign work for an existing impeller wheel using the 3D inverse method with an in-house aeroacoustic code. The CFD simulations for the compressor characteristics and internal flow field details, the numerical predictions of aeroacoustic sound emissions, and FEA analysis for the structure integrity have all been attempted to thoroughly assess the performances of baseline and optimised impellers. The computational results found that the new impeller can lead to better performances in all three aspects, which are supported by the experimental measurements conducted for both impellers using the same test configurations. The experimental data confirmed that the inversely redesigned impeller wheel provides a wider compressor operating range, higher efficiency at large rotating speed, and a few dB(A)s lower noise emissions in the upstream radiation direction.
Proceedings Papers
Ryan C. McGowan, Muthuvel Murugan, Michael T. Szedlmayer, Kenneth S. Kim, Kurt M. Kruger, David J. Gondol, Chol-Bum M. Kweon, Peter J. Clerkin, Rik D. Meininger, Joseph A. Gibson, Christopher A. Lindsey, Bernard N. Acker, Marshall R. Musser
Proc. ASME. GT2019, Volume 8: Microturbines, Turbochargers, and Small Turbomachines; Steam Turbines, V008T26A024, June 17–21, 2019
Paper No: GT2019-91843
Abstract
Compared to turbodiesel technology for ground vehicles, the increasing application of turbochargers in aircraft diesel engines presents a unique set of structural dynamics and aeroelasticity considerations due to their more extreme operating conditions. In particular, blade vibration and flutter are two related but distinct phenomena that impact the design of these turbochargers and reliable operation over their lifetime. Deformation or fatigue due to blade excitation can reduce efficiency or cause components to fail prematurely. The existing literature on turbomachinery covers many research efforts to analyze these phenomena by investigating the physical mechanisms responsible as well as the relationships between the fluid and solid dynamics. This review paper emphasizes those efforts most relevant to airborne diesel turbochargers, including research focusing on altitude effects on centrifugal compressors. Early work in which the dominant parameters for modeling turbocharger behavior were identified is highlighted as are current efforts to develop higher-fidelity models. An overview of existing and proposed techniques for measuring and controlling blade resonance is also given. Finally, an experimental facility for testing of turbochargers is proposed. The facility will include a nonintrusive stress measurement system and enable measurement of blade deflection/vibration together with blade stress, temperature, pressure, and flow rate across a range of simulated altitudes. The goal will be to characterize the blade bending modes, resonances, and critical speeds for various simulated altitude, pressure, temperature, and flow rate conditions so that designs may be devised that could prevent or avoid the associated failure modes in airborne diesel applications.
Proceedings Papers
Proc. ASME. GT2018, Volume 9: Oil and Gas Applications; Supercritical CO2 Power Cycles; Wind Energy, V009T38A014, June 11–15, 2018
Paper No: GT2018-75914
Abstract
Primary energy consumption of diesel engines is increasing rapidly and strict emission standards are introduced by the government. Interests in engine waste heat recovery have been renewed to alleviate the energy shortage and emission issues. Supercritical CO 2 (S-CO 2 ) cycle has emerged as a promising method considering its compact structure and system safety level in addition to the environmental friendly characteristics. This paper explores the potential of using S-CO 2 cycle system for engine waste heat recovery. Both heat load from the low temperature jacket cooling water and the high temperature engine exhaust gas are intended to be recovered. In the original system, the jacket cooling water is used to preheat the S-CO 2 working fluid and the engine exhaust gas is utilized in the preheater. As an optimized scheme, system with two preheaters is presented. The engine exhaust gas is further cooled in a high temperature preheater after the jacket cooling water in the low temperature preheater. The available heat load from these two heat sources can be entirely recovered. However, the increasing preheating temperature suppresses the regeneration effect. A regeneration branch is then added in the system. Part of the S-CO 2 working fluid from the compressor goes into a low temperature regenerator and then converges with the other part from the two preheats. A deeper utilization of the regeneration heat load is achieved and performance enhancement of the S-CO 2 cycle system is expected. The maximum net power output of the system with regeneration branch reaches 82.8 kW, which results in an 8.5% increment on the engine power output.
Proceedings Papers
Philippe Dagaut, Yuri Bedjanian, Guillaume Dayma, Fabrice Foucher, Benoît Grosselin, Manolis Romanias, Roya Shahla
Proc. ASME. GT2018, Volume 3: Coal, Biomass, and Alternative Fuels; Cycle Innovations; Electric Power; Industrial and Cogeneration; Organic Rankine Cycle Power Systems, V003T03A001, June 11–15, 2018
Paper No: GT2018-75136
Abstract
The combustion of conventional fuels (Diesel and Jet A-1) with 10–20% vol. oxygenated biofuels (ethanol, 1-butanol, methyl octanoate, rapeseed oil methyl ester, diethyl carbonate, tri(propylene glycol)methyl ether, i.e., CH 3 (OC 3 H 6 ) 3 OH, and 2,5-dimethylfuran) and a synthetic paraffinic kerosene was studied. The experiments were performed using an atmospheric pressure laboratory premixed flame and a four-cylinder four-stroke Diesel engine operating at 1500 rpm. Soot samples from kerosene blends were collected above a premixed flame for analysis. Polyaromatic hydrocarbons (PAHs) were extracted from the soot samples. After fractioning, they were analyzed by high-pressure liquid chromatography (HPLC) with UV and fluorescence detectors. C 1 to C 8 carbonyl compounds were collected at the Diesel engine exhaust on 2,4-dinitrophenylhydrazine coated cartridges (DNPH) and analyzed by HPLC with UV detection. The data indicated that blending conventional fuels with biofuels has a significant impact on the emission of both carbonyl compounds and PAHs adsorbed on soot. The global concentration of 18 PAHs (1-methyl-naphthalene, 2-methyl-naphthalene, and the 16 US priority EPA PAHs) on soot was considerably lowered using oxygenated fuels, except 2,5-dimethylfuran. Conversely, the total carbonyl emission increased by oxygenated biofuels blending. Among them, ethanol and 1-butanol were found to increase considerably the emissions of carbonyl compounds.
Proceedings Papers
Proc. ASME. GT2018, Volume 8: Microturbines, Turbochargers, and Small Turbomachines; Steam Turbines, V008T26A005, June 11–15, 2018
Paper No: GT2018-75452
Abstract
In this study, a fundamental approach to the choice of turbocharger turbine for a pulse-charged heavy-duty diesel engine is presented. A standard six-cylinder engine build with a production exhaust manifold and a Twin-scroll turbocharger is used as a baseline case. The engine exhaust configuration is redesigned and evaluated in engine simulations for a pulse-charged concept consisting of a parallel twin-turbine layout. This concept will allow for pulse separation with minimized exhaust pulse interference and low exhaust manifold volume. This turbocharger concept is uncommon, as most previous studies have considered two stage systems, various multiple entry turbine stages etc. Even more rare is the fundamental aspect regarding the choice of turbine type as most manufacturers tend to focus on radial turbines, which by far dominate the turbochargers of automotive and heavy-duty applications. By characterizing the turbine operation with regards to turbine parameters for optimum performance found in literature a better understanding of the limitations of turbine types can be achieved. A compact and low volume exhaust manifold design is constructed for the turbocharger concept and the reference radial turbine map is scaled in engine simulations to a pre-set AFR-target at a low engine RPM. By obtaining crank-angle-resolved data from engine simulations, key turbine parameters are studied with regard to the engine exhaust pulse-train. At the energetic exhaust pressure pulse peak, the reference radial turbine is seen to operate with suboptimum values of Blade-Speed-Ratio, Stage Loading and Flow Coefficient. The study concludes that in order to achieve high turbine efficiency for this pulse-charged turbocharger concept, a turbine with efficiency optimum towards low Blade-Speed Ratios, high Stage Loading and high Flow Coefficient is required. An axial turbine of low degree of reaction-design could be viable in this respect.
Proceedings Papers
José Ramón Serrano, Luis Miguel García-Cuevas, Lukas Benjamin Inhestern, Stephane Guilain, Hadi Tartoussi
Proc. ASME. GT2018, Volume 8: Microturbines, Turbochargers, and Small Turbomachines; Steam Turbines, V008T26A015, June 11–15, 2018
Paper No: GT2018-76470
Abstract
One dimensional modeling can give important insights into the needs of engine and turbocharger design. In this paper a holistic turbocharger model that calculates besides transient effects also heat transfer, friction losses, extrapolated adiabatic turbine and compressor maps has been validated over the range of an entire diesel engine map. Due to its capability of calculating heat fluxes in very different conditions turbocharger maps measured in hot as well as maps measured in cold conditions can be used as input data of the model. The turbocharger model has been validated in a high number of running conditions and has been compared against a reference model to highlight its advantages. Since the model can calculate data that are difficult to measure as complex internal turbocharger heat transfer, entropy, and adiabatic efficiency pulses, these numbers have been analyzed. It has been found out that the analyzed turbocharger loses relatively high amounts of heat especially at its highest efficiency zone. Further, the importance of the isentropic power during the valley in engine exhaust gas flow pulses has been highlighted. Apart from the peak energy a big part of isentropic energy is available in the valley of the pulse. Finally, a specific coefficient has been proposed to quantify the available energy rate in the valley of the pulse.
Proceedings Papers
Proc. ASME. GT2017, Volume 8: Microturbines, Turbochargers and Small Turbomachines; Steam Turbines, V008T26A009, June 26–30, 2017
Paper No: GT2017-63658
Abstract
The bearing system of turbochargers used in trucks needs to be optimized in order to reduce the frictional losses. This helps in transmitting the exhaust energy more efficiently to the compressor wheel to increase boost pressure. Understanding the thrust loading on the axial bearing helps in optimal design of the bearing and the associated lubrication system. With the advent of twin scroll turbochargers, it is necessary to understand the thrust load behaviour at different operating conditions. This paper pioneers in studying the unsteady axial loads measured on a twin scroll turbocharger mounted on a 6 cylinder, 13 litre diesel engine used in the truck industry along with the corresponding analytical predictions for varied engine speeds and loading conditions. Transient thrust forces were measured using a weakened bearing in the experimental approach along with transient pressure measurments on the turbocharger. The axial bearing weakening required a design trade-off between flexibility and rigidity of the bearing. The results from the experimental and analytical methods provide better understanding of the characteristics of transient thrust forces that act on a turbocharger mounted on an engine of a heavy duty truck along with its design implications. The maximum normalized axial load measured and predicted were −90 N and −100 N, respectively.
Proceedings Papers
Dhinagaran Ramachandran, Balamurugan Mayandi, Seran Krishnamoorthy, Gopalakrishnan Mani, Vasudevan Ramesh, Swathi Chitra Lakshmanan
Proc. ASME. GT2017, Volume 8: Microturbines, Turbochargers and Small Turbomachines; Steam Turbines, V008T26A021, June 26–30, 2017
Paper No: GT2017-64359
Abstract
Automotive turbochargers play an important role in improving fuel economy, reducing emissions and improving drivability. Key to the improvement of the turbocharger performance is compressor efficiency. Compressors used in turbochargers are typically operated in a wide range of speed and flow. This wide operating range is a challenge to the design and improving the performance is often a fine balance between required efficiencies towards the surge, choke regions apart from having a comfortable speed margin for high altitude operations. In this study an existing compressor that best matched a 180hp commercial diesel engine application is chosen and its performance is further improved towards the lower flow region. Improvement is carried out through a set of designed experiments using a combination of Preliminary Design (PD) and Computational Fluid Dynamics (CFD) tools. Mechanical integrity of the wheel is ensured using Finite Element Analysis. A prototype is made out of the improved design and tested in an in-house gas stand. Predicted efficiency improvements are reflected in gas stand tests. Efficiency improvements in the lower flow range are observed over 7% while there is an acceptable drop (3.7%) near the peak power side. The improved compressor also shows higher part load efficiencies.
Proceedings Papers
Proc. ASME. GT2017, Volume 8: Microturbines, Turbochargers and Small Turbomachines; Steam Turbines, V008T26A016, June 26–30, 2017
Paper No: GT2017-64190
Abstract
In times of stringent emission standards for automotive and truck applications, exhaust gas recirculation (EGR) is used in IC engines to reduce NO x emissions by recirculating a portion of an engine’s exhaust gas. The amount of exhaust gas determined for EGR is withdrawn from the exhaust gas route and routed back into the combustion chamber. The recirculated exhaust gas acts as an inert gas and, when mixed with the pre-combustion mixture, helps to decrease the combustion temperature and thus NO x emissions. Designed for a diesel engine within a truck application, the turbine in this particular research project is fed by two cylinder groups, however, only the exhaust gas of one group is recirculated. The reduced mass flow in the small turbine scroll (EGR-scroll) through EGR withdrawal, along with the increased pressure required for EGR transport, leads to a massive reduction in the mass flow parameter of the EGR-scroll. The common turbocharger design process has been based on steady admission rather than unsteady admission given through the pulsating nature of multi-cylinder admission. This has lead to diverging results of turbochargers performing well on steady hot gas test rigs compared to performing badly in the final tests on the engine itself. In this paper however, unequal admission resulting from pulsating admission is taken into account. Based on unsteady admission, a methodology is proposed for steady computations with unequal admissions, and a thorough 3D CFD loss analysis is to be presented to understand the turbine behaviour, reveal the regions for improvements, and provide a framework for further development.
Proceedings Papers
Proc. ASME. GT2017, Volume 8: Microturbines, Turbochargers and Small Turbomachines; Steam Turbines, V008T26A012, June 26–30, 2017
Paper No: GT2017-63887
Abstract
In order to meet the requirements of automobile engines and marine-use diesel engines, turbochargers must be developed with high boost pressure and appreciably high levels of efficiency. The high pressure rise typically achieved in transonic compressors lead to a stage characterized by high inlet relative Mach numbers. Losses generated in transonic compressors are to a large extent due to the formation of shockwaves at the inducer with interactions between the shock, tip leakage vortex and boundary layer. Significant efficiency reduction occurs at the tip region of the impeller due to the complex interaction of the tip clearance flow and shocks, resulting in significant overall performance degradation. A study has been conducted on the unsteady motion of shockwaves in a transonic centrifugal compressor with vaned diffuser using time-resolved three-dimensional Reynolds average Navier-Stokes simulation. Focus is placed on the impact of the shock motion and post shock unsteadiness on stage performance and impeller-diffuser interaction. The key findings were that the interaction of the shockwave with the tip leakage flow and the boundary layer were the most influential in loss generation with a consequence of increased aerodynamic loss. For the unsteady blade row interaction, the influence of upstream flow unsteadiness on diffuser vanes had significant effect on the flow incidence angle. Periodic jet and wake structure from the impeller and the progressive pressure waves which interacts with the vanes at the interface strongly determines the intensity and position of the vane shock. This has implications on performance in terms of stall inception and static pressure rise across the diffuser.
Proceedings Papers
Proc. ASME. GT2017, Volume 8: Microturbines, Turbochargers and Small Turbomachines; Steam Turbines, V008T26A006, June 26–30, 2017
Paper No: GT2017-63370
Abstract
Turbochargers are a key technology for reducing the fuel consumption and CO 2 emissions of heavy-duty internal combustion engines by enabling greater power density, which is essential for engine downsizing and downspeeding. This in turn raises turbine expansion ratio levels and drives the shift to air systems with multiple stages, which also implies the need for interconnecting ducting, all of which is subject to tight packaging constraints. This paper considers the challenges in the aerodynamic optimization of the exhaust side of a two-stage air system for a Caterpillar 4.4-litre heavy-duty diesel engine, focusing on the high pressure turbine wheel and interstage duct. Using the current production designs as a baseline, a genetic algorithm-based aerodynamic optimization process was carried out separately for the wheel and duct components in order to minimize the computational effort required to evaluate seven key operating points. While efficiency was a clear choice for the cost function for turbine wheel optimization, the most appropriate objective for interstage duct optimization was less certain, and so this paper also explores the resulting effect of optimizing the duct design for different objectives. Results of the optimization generated differing turbine wheel and interstage duct designs depending on the corresponding operating point, thus it was important to check the performance of these components at every other operating point, in order to determine the most appropriate designs to carry forward. Once the best compromise high pressure turbine wheel and interstage duct designs were chosen, prototypes of both were manufactured and then tested together against the baseline designs to validate the CFD predictions. The best performing high pressure turbine design, wheel A, was predicted to show an efficiency improvement of 2.15 percentage points, for on-design operation. Meanwhile, the optimized interstage duct contributed a 0.2 and 0.5 percentage-point efficiency increase for the high and low pressure turbines, respectively.
Proceedings Papers
Proc. ASME. GT2017, Volume 1: Aircraft Engine; Fans and Blowers; Marine; Honors and Awards, V001T25A002, June 26–30, 2017
Paper No: GT2017-63176
Abstract
Gas turbine engines are widely used as the marine main power system. However, they can’t reverse like diesel engine. If the reversal is realized, other ways must be adopted, for example, controllable pitch propeller (CPP) and reversible gearing. Although CPP has widespread use, the actuator installation inside the hub of the propeller lead to the decrease in efficiency, and it takes one minute to switch “full speed ahead” to “full speed astern”. In addition, some devices need to be added for the reversible gearing, and it takes five minutes to switch from “full speed ahead” “to “full speed astern”. Based on the gas turbine engine itself, a reversible gas turbine engine is proposed, which can rotate positively or reversely. Most important of all, reversible gas turbine engine can realize operating states of “full speed ahead”, “full speed astern“ and “stop propeller”. And, it just takes half of one minute to switch “full speed ahead” to “full speed astern”. Since reversible gas turbine engines have compensating advantages, and especially in recent years computational fluid dynamics (CFD) technology and turbine gas-dynamics design level develop rapidly, reversible gas turbine engines will be a good direction for ship astern. In this paper, the power turbine of a marine gas turbine engine was redesigned by three dimensional shape modification, and the flow field is analyzed using CFD, in order to redesign into a reverse turbine. The last stage vanes and blades of this power turbine were changed to double-layer structure. That is, the outer one is reversible turbine, while the inner is the ahead one. Note that their rotational directions are opposite. In order to realize switching between rotation ahead and rotation astern, switching devices were designed, which locate in the duct between the low pressure turbine and power turbine. Moreover, In order to reduce the blade windage loss caused by the reversible turbine during working ahead, baffle plates were used before and after the reversible rotor blades. This paper mainly studied how to increase the efficiency of the reversible turbine stage, the torque change under different operating conditions, rotational speed and rotational directions, and flow field under typical operating conditions. A perfect profile is expected to provide for reversible power turbine, and it can decrease the blade windage loss, and increase the efficiency of the whole gas turbine engine. Overall, the efficiency of the newly designed reversible turbine is up to 85.7%, and the output power is more than 10 MW, which can meet requirements of no less than 30% power of rated condition. Most importantly, the shaft is not over torque under all ahead and astern conditions. Detailed results about these are presented and discussed in the paper.
Proceedings Papers
Proc. ASME. GT2017, Volume 8: Microturbines, Turbochargers and Small Turbomachines; Steam Turbines, V008T26A001, June 26–30, 2017
Paper No: GT2017-63069
Abstract
The study at hand analyzes the influence of aerodynamic mistuning and aerodynamic coupling on the vibration behavior of mistuned small radial turbine wheels. The aerodynamic mistuning is caused by angular non uniformity of the variable turbine guide vanes. Variable turbine guide vanes are state of the art in exhaust gas turbochargers for automotive diesel engines. Aerodynamic coupling describes the coupling of the turbine blades through the flow. It can influence the mistuned vibration behavior of the turbine wheel due to varying operation conditions, in which the turbine pressure ratio and the pressure distribution over the turbine wheel surface is changed. It was analyzed whether the aerodynamic mistuning and aerodynamic coupling must be considered for small radial turbine wheel designs. The basis for this investigation were blade vibration measurements under standstill conditions with a laser vibrometer as well as blade vibration measurements during operation with a tip timing system. The mistuned turbine eigenforms were analyzed and compared at various ambient conditions using these measurement results. By means of forced response calculations — unsteady 3D CFD and 3D FEA —, the influence of aerodynamic mistuning on the ideal tuned turbine was examined to be able to separate the aerodynamic mistuning from the mistuning of the structure. Furthermore, the superimposed effect of the aerodynamic mistuning and the mistuning of the structure on the turbine eigenforms and the amplitude amplification was analyzed using a mistuned 3D FE model and a population of samples with varying aerodynamic mistuning. It was found, that the aerodynamic coupling and aerodynamic mistuning have a negligible effect on the mistuned vibration behavior for a small radial turbine with variable turbine guide vanes. These two parameters must not be considered when designing such a turbine wheel.
Proceedings Papers
Proc. ASME. GT2017, Volume 8: Microturbines, Turbochargers and Small Turbomachines; Steam Turbines, V008T26A031, June 26–30, 2017
Paper No: GT2017-64927
Abstract
Engine downsizing and down-speeding are essential in order to meet future US fuel economy mandates. Turbocharging is one technology to meet these goals. Fuel economy improvements must, however, be achieved without sacrificing performance. One significant factor impacting drivability on turbocharged engines is typically referred to as, “Turbo-Lag”. Since Turbo-lag directly impacts the driver’s torque demands, it is usually perceptible as an undesired slow transient boost response or as a sluggish torque response. High throughput turbochargers are especially susceptible to this dynamic and are often equipped with variable geometry turbines (VGT) to mitigate some of this effect. Assisted boosting techniques that add power directly to the TC shaft from a power source that is independent of the engine have been shown to significantly reduce turbo-lag. Single unit assisted turbochargers are either electrically assisted or hydraulically assisted. In this study a regenerative hydraulically assisted turbocharger (RHAT) system is evaluated. A custom designed RHAT system is coupled to a light duty diesel engine and is analyzed via vehicle and engine simulations for performance and energy requirements over standard test cycles. Supplier provided performance maps for the hydraulic turbine, hydraulic turbo pump were used. A production controller was coupled with the engine model and upgraded to control the engagement and disengagement of RHAT, with energy management strategies. Results show some interesting dynamics and shed light on system capabilities especially with regard to the energy balance between the assist and regenerative functions. Design considerations based on open loop simulations are used for sizing the high pressure accumulator. Simulation results show that the proposed RHAT turbocharger system can significantly improve engine transient response. Vehicle level simulations that include the driveline were also conducted and showed potential for up to 4% fuel economy improvement over the FTP 75 drive cycle. This study also identified some technical challenges related to optimal design and operation of the RHAT. Opportunities for additional fuel economy improvements are also discussed.
Proceedings Papers
Proc. ASME. GT2017, Volume 8: Microturbines, Turbochargers and Small Turbomachines; Steam Turbines, V008T26A013, June 26–30, 2017
Paper No: GT2017-63923
Abstract
Regulated two-stage (RTS) turbocharging system is an effective way to enhance power density and reduce pollutant of internal combustion engine for increasingly stringent demands of fuel consumption and emission regulation. Due to achieving high boost pressure with great system efficiency and controllable characteristic in wide working range, the RTS turbocharging system improves output power at low speed condition and reduces pumping loss at high speed condition. Composing of two turbochargers and control valves, the RTS turbocharging system is matched with engine at a design point and regulated by adjusting control valves to meet the engine requirement of intake pressure and flow at other working conditions. Calibration of the control valves under all operating conditions by plentiful experiments is significant for turbocharging system, particularly that matched with diesel engine for vehicle. Moreover, when an automobile run on the plateau, the intake air flow will decrease and combustion in cylinder will deteriorate obviously. Compared with other turbocharging system, two-stage turbocharging system is more suitable to the offset power loss of engine. Regulating boost system under different operation conditions draws more attention to engine performance recovery so that the workload of calibration raises rapidly in consideration of altitude factor. Though much work has been done in calibration at various altitudes, there are few, if any, discussion on open-closed boundary of control valves to simplify the calibration process. In this paper, it aims to present a regulation boundary model of control valve at different altitudes to guide the calibration and a series of experiments for RTS system can be saved. Firstly, a thermodynamics analysis of the RTS turbocharging system is conducted and typical regulation methods are compared in terms of the adjustment capacity and efficiency characteristics of turbocharging system, which indicates that high-stage turbine bypass is the optimum regulation method. Then, a regulation boundary model for the RTS turbocharging system at different altitudes is deduced, according to the relation of equivalent turbine area and engine operating condition. The regulation boundaries of different altitudes are obtained by iterative computation of the model, and the whole working mode of the RTS system is divided into a fully closed area and a regulated area. Experiments are carried out to verify the regulation boundary model at sea level condition. Brake torque, efficiency of the RTS system and temperature before high-stage turbine are primary parameters for verification in this article. The maximum error shows up with a value of 3.65% brake torque at 2200rpm. While a one-dimensional simulation model is built up to validate the regulation boundary model of the plateau. All the errors are smaller than 3% at various altitudes. It results that model is accurate enough to predict the regulation boundary of the RTS system. By the calculation of regulation boundary model, the brake torque at regulation boundary will decrease if the engine speeds up. It also manifests that fully closed area will argument if the automobile climbs up to high operating altitude, especially under high speed condition.