Update search
Filter
- Title
- Author
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- Issue
- Volume
- References
- Paper No
Filter
- Title
- Author
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- Issue
- Volume
- References
- Paper No
Filter
- Title
- Author
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- Issue
- Volume
- References
- Paper No
Filter
- Title
- Author
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- Issue
- Volume
- References
- Paper No
Filter
- Title
- Author
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- Issue
- Volume
- References
- Paper No
Filter
- Title
- Author
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- Issue
- Volume
- References
- Paper No
NARROW
Date
Availability
1-20 of 1201
Aircraft engines
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
Proc. ASME. GT2019, Volume 1: Aircraft Engine; Fans and Blowers; Marine; Honors and Awards, V001T01A021, June 17–21, 2019
Paper No: GT2019-91402
Abstract
Abstract Over the past decades of preliminary aero-engine design a great effort has been invested in increasing steady-state efficiency to reduce missions fuel burn and thus CO2 emissions. Whilst pushing the performance cycle further to its limits previously minor deemed processes such as the transient behavior become more important because engines stability must still be granted for. It is therefore beneficial to integrate transient performance early into the overall aero-engine design tool chain to be able to predict the dynamic behavior from the beginning. This paper presents a methodology to couple predesign and transient performance simulation in order to get a more holistic picture of aero-engines early in the design process. This procedure entails extensive amount of data transfer throughout multi-disciplinary tools with different fidelity levels. This task is tackled using DLRs virtual engine platform GTlab (Gas Turbine Laboratory), which provides a geometric data model with abstract description of predesign components and standardized interfaces for data exchange. In order to demonstrate the proposed methodology a performance model of a turbofan similar to the V2500 aero-engine is used. For that purpose, a performance cycle is established providing boundary conditions for the preliminary aerodynamic engine design. The designed components provide necessary input data for the subsequent transient certification maneuver Eventually, parametric studies are conducted to show the impact of design variations on transient data such as the minimum surge margin and minimum tip clearance as well as on preliminary engine design.
Proceedings Papers
Proc. ASME. GT2019, Volume 1: Aircraft Engine; Fans and Blowers; Marine; Honors and Awards, V001T01A018, June 17–21, 2019
Paper No: GT2019-91076
Abstract
Abstract The interaction between the fuel jet, the oil jet and the airflow is involved in the afterburner (or ramjet combustion chamber) and the lubricating oil system of the aero-engine respectively. The latter mainly studies the penetration depth of the oil jet into the airflow, the oil jet breakup position and so on. In the under-race lubrication system, the oil jet is deflected due to the high-speed rotation of the oil scoop and some droplets, ligaments are separated. The deflection of the oil jet and the splash of droplets may affect the oil capture efficiency of the under-race lubrication system. At the same time, the configuration of the oil jet nozzle will also have a certain impact on the oil capture efficiency. Therefore, it is necessary to carry out research on the flow characteristics of the oil jet in the airflow, and provide reference for the oil jet nozzle configurations of the under-race lubrication system. In this paper, the calculation results show that the Couple Level-Set and Volume of Fluid (CLSVOF) method is better than the Volume of Fluid (VOF) method. The correlations between the coordinate of the oil jet breakup positions and the liquid-air momentum ratio were concluded. The equation of the trajectory curve was derived for the jet column trajectory before breakup. The difference of the oil jet flow characteristics between single jet nozzle and the twin jet nozzle and the tandem jet nozzle configuration is also studied. Finally, the design method under the tandem jet nozzle configuration is given.
Proceedings Papers
Proc. ASME. GT2019, Volume 1: Aircraft Engine; Fans and Blowers; Marine; Honors and Awards, V001T01A023, June 17–21, 2019
Paper No: GT2019-91508
Abstract
Abstract Intershaft bearing is widely adopted in dual rotor turbofan aircraft engines. Since this kind of dual rotor system has two different rotor speeds and the intershaft bearing leads to the coupling between HP rotor and LP rotor, the calculation of the critical speeds is much more complicated than that of the rotor systems without intershaft bearing. Compared to a single rotor system, the dual rotor system has more critical speeds which can be classified as critical speeds excited by HP rotor and that by LP rotor. In the paper, a finite element rotor model of a high-bypass turbofan jet engine with intershaft bearing is established for the study of critical speeds analysis. The general axisymmetric element is used to model the shafts and disks, and the blades are simplified to mass points. The main bearings including the intershaft bearing are set up with spring element. Assuming that the rotational speed ratio of the two rotors for the dual rotor system is a fixed number, the critical speeds are calculated using three methods based on the finite element rotor model. For the first method, the system critical speeds are obtained directly by Campbell diagram based on QR damped solution method. Then the synchronous unbalance response analyses are carried out and the rotor critical speeds are derived from the amplitude-frequency curves. For the last method, multiple group Campbell diagram analyses are conducted. With one rotor speed fixed at constant rpm N, we can change the speed of the other rotor to obtain one group of critical speeds. By varying speed N of the two rotors, a critical speeds data set can be obtained and plotted as a dual rotor critical speed map. The critical speeds can be easily extracted from the critical speed map according to the rotational speed curve of the engine. The study shows that the dual rotor system critical speeds calculated from above three methods are identical. For the first two methods, the rotational speed ratio of two rotors must be a known and fixed number, which is impossible in reality. The third proposal has no rotation speed relation restriction for rotors, and therefore is recommended for analyzing the critical speeds of aircraft engines with intershaft bearing.
Proceedings Papers
Proc. ASME. GT2019, Volume 1: Aircraft Engine; Fans and Blowers; Marine; Honors and Awards, V001T01A016, June 17–21, 2019
Paper No: GT2019-90992
Abstract
Abstract This study presents a CFD comparison of a piccolo tube inlet anti-icing system with benchmark flight test data and a shielded swirl design. Aircraft engine inlets must prevent ice accretion that could cause damage or inhibit safe operation. A common way to meet this requirement is to heat the inlet with hot air distributed with a piccolo tube or a swirl anti-icing system. Piccolo tube systems generally use less engine bleed air but are more complex and heavier than swirl systems. The CFD model for this study includes all the inlet key characteristics such as piccolo tube holes, material properties, and thickness. The model is evaluated in a two-step process. Water collection rates for flight in icing conditions are calculated. These results are then mapped onto a conjugate heat transfer film runback model. The CFD results include surface temperatures and the amount of liquid film runback that flows off the heated surface. Benchmark test data is presented illustrating good inlet surface temperature agreement with the piccolo tube CFD model for flight in both dry air and icing conditions. This CFD modeling approach is also applied to a unique shielded swirl anti-icing system. The results of this study confirm that a shielded swirl anti-icing system can be designed to provide the same level of anti-icing protection that is achieved with a piccolo tube configuration without overheating the inlet or requiring more engine bleed flow.
Proceedings Papers
Proc. ASME. GT2019, Volume 2A: Turbomachinery, V02AT39A007, June 17–21, 2019
Paper No: GT2019-90425
Abstract
Abstract Future aircraft design concepts often show a somewhat wing embedded ultra-high bypass ratio engine. The aircraft concept of the Coordinated Research Centre 880 (CRC880) is a single-aisle configuration with engines partly integrated over the aircraft wing. The aircraft is designed to take off and land on regional airfields with low noise and fuel emissions to address the guidelines set by the ACARE. As a result of the engine installation, the inlet induces a non-axisymmetric boundary layer ingestion into the fan stage. In experimental setups, inlet distortion has often been seen as a 60-degree circumferential inlet stagnation pressure distortion. However, the fan stage inlet flow of the prescribed engine installation of the CRC880 differs to a great extent from a 60-degree sector. In this paper, an aerodynamic comparison between a realistic inflow situation and a similar 60-degree inlet distortion for the same ultra-high bypass ratio fan stage is given. The realistic inflow situation is a result of the flow moving over the aircraft wing suction side and entering the nacelle. As non-axisymmetric inlet geometry remains the same for both cases, therefore, only the total pressure boundary condition at nacelle inlet was changed between both cases. Hence, full annulus simulations are required. Both inlet distortion cases are equivalent by matching average 60-degree distortion coefficient. This study points out that the method, by using averaged 60-degree segment values, excludes specific inflow characteristics. For the same averaged 60-degree distortion coefficient, the local distortion of the embedded case is up to four times larger at rotor tip compared to the segmental approach. For constant mass flow, fan pressure ratio and isentropic efficiency drop by more than five and eight percent respectively. At peak efficiency operating condition, the decrease is even more significant with more than nine percent in stage efficiency. For future embedded aircraft engine configurations, the fan designer has to take into account the non-axisymmetric local flow changes. Hence, the 60-degree segment method is not sufficient when investigating experimental boundary layer ingesting fans and therefore, further method developments are necessary.
Proceedings Papers
Computational and Experimental Study of Hot Streak Transport Within the First Stage of a Gas Turbine
Proc. ASME. GT2019, Volume 2A: Turbomachinery, V02AT45A022, June 17–21, 2019
Paper No: GT2019-91276
Abstract
Abstract The paper discusses the migration, the interaction with the blades, and the attenuation of hot streaks generated by combustor burners, during their propagation within the first turbine stage of aero-engines. Experiments and Computational Fluid Dynamic (CFD) simulations were carried out in the framework of the European Project RECORD and on its follow-up. Measurements considering burner-representative temperature perturbations injected upstream of an un-cooled high-pressure gas turbine stage were performed in the high-speed closed-loop test-rig of the Politecnico di Milano (Italy). The hot streaks were injected in streamwise direction at the stage inlet in four different circumferential positions with respect to the stator blade. They feature a 20% over-temperature with respect to the main flow. Detailed temperature measurements as well as unsteady aerodynamic measurements upstream and downstream of the blade rows were performed. Time-accurate CFD simulations of the flow upstream and within the turbine stage were performed with the TRAF code, developed by the University of Florence. Measurements show a relevant attenuation of hot streaks throughout their transport within the stator and the rotor blade rows, highly depending on the injection azimuthal position. The perturbations were observed to lose their spatial coherence, especially in the transport within the rotor, and to undergo severe spanwise migration. Simulations exhibit a good agreement with the experiments on the measurement planes and allow tracking the complex flow phenomena occurring within the blade rows. Finally the aerodynamic and thermal implications of the inlet temperature perturbations are properly highlighted and discussed.
Proceedings Papers
Proc. ASME. GT2019, Volume 2A: Turbomachinery, V02AT39A033, June 17–21, 2019
Paper No: GT2019-91734
Abstract
Abstract High loading design is a permanent pursuit in the field of the modern compressors to reduce the size and weight of the aero-engine. Blading with slots is a potential way to improve compressor performance. An innovative double-slot scheme was proposed and validated to control corner separation in a highly loaded compressor cascade in our previous studies. To evaluate the three-dimensional (3D) performance of blading with slots, the current research compares the performance of blading with full-span slots to that with blade end slots. First, the two-dimensional (2D) configuration performance is evaluated both for the datum and slotted profiles. The slotted configuration could effectively supress separation, especially under positive incidence conditions where the separation of the datum profile is large. Thus, two 3D blading forms, the full-span slots and the blade end slots (covering 20% of the span from the endwall), are compared within. Results show that blading with full-span slots could effectively reduce the loss under positive incidence angles, while blading with blade end slots could effectively reduce the loss above an incidence angle of −4°. The loss for the end slotted blade is lower than that of the full-span slotted blade under most incidence angles (within the range of 4°). The additional mixing loss of the jet and the main flow are caused by the full-span slots at the mid-span regions where the flow remains attached for the unslotted geometry. Blading with slots alters the flow structures and reorganises the flow in the blade end regions. The self-adaptive jets from the slot outlet push the accumulated low-momentum flow downstream and restrain its migration toward the mid-span, such that the uniform main flow in the blade mid-span region is enhanced.
Proceedings Papers
M. Dellacasagrande, P. Z. Sterzinger, S. Zerobin, F. Merli, L. Wiesinger, A. Peters, G. Maini, F. Heitmeir, E. Göttlich
Proc. ASME. GT2019, Volume 2A: Turbomachinery, V02AT45A011, June 17–21, 2019
Paper No: GT2019-90824
Abstract
Abstract This paper, the second of two parts, presents an experimental investigation of the unsteady flow field evolving in a two-stage two-spool test turbine facility. The experimental setup, which was designed to reproduce the operating condition of modern commercial aero-engines, consists of a high-pressure turbine (HPT) stage followed by a turbine center frame (TCF) with non-turning struts, and a co-rotating low-pressure turbine (LPT) stage. Measurements carried out with a fast-response aerodynamic pressure probe (FRAPP) were post-processed to describe the unsteady evolution of the flow downstream of the HPT rotor, through the TCF duct, and at the exit of the LPT stage. The time-resolved results presented in the first part of this paper show that deterministic fluctuations due to both rotors characterize the flow field downstream of the LPT. In order to characterize the deterministic unsteadiness induced by all the components constituting the turbine facility (HPT, TCF and LPT) and their interactions, measurements were carried out in three different planes located downstream of the HPT, at the exit of the TCF and downstream of the LPT stage. The unsteady results obtained in the plane located at the exit of the LPT are discussed in more details in this second part of this paper, providing information about the interactions between the two rotors. A proper phase-average procedure, known as rotor synchronic averaging (RSA), which takes into account the rotorrotor interaction, was adopted to capture the unsteadiness due to both rotors. Proper Orthogonal Decomposition (POD) was also applied to provide a characterization of the major contributors in terms of energy to the deterministic unsteadiness occurring in the test turbine facility. At the exit of the LPT rotor, the perturbations induced by the HPT stage and the interactions between the two rotors were found to dominate over the unsteadiness due to the LPT only.
Proceedings Papers
Proc. ASME. GT2019, Volume 2A: Turbomachinery, V02AT45A012, June 17–21, 2019
Paper No: GT2019-90857
Abstract
Abstract Abrupt distortions can appear as a result of transient crosswind or during rapid aircraft maneuvers. Such distortions are known to reduce the aerodynamic stability of engines and therefore present a major concern to all aero-engine manufacturers. To assess the aerodynamic stability of fan blades due to distortions, rig tests are usually carried out to establish the loss in stall margin. In such test campaigns, an exit duct (which is followed by a nozzle) is placed downstream of the fan blade and the operating condition of the fan is controlled by this nozzle. It is shown in this paper that in such rig tests the length of duct downstream of a fan has a significant impact on fan stall margin. The key contributor for such interaction is the dynamic response of the exit duct and the aerodynamic stability of the fan is affected by the acoustic reflection from the exit nozzle. To study the underlying physics, transient response in the exit duct downstream of a transonic fan stage was studied numerically using a simplified model. Simulation results, along with calculations based on analytical theories, confirmed the generation, propagation and reflection of waves induced by the inlet distortion. A quantitative relationship concerning the lengths of the compression system is introduced which determines whether a duct setup would have beneficial or detrimental influences on compressor aerodynamic stability. The findings of this research have great implications for the stability assessment of fans as the stability margin can be affected by the waves generated in bypass ducts.
Proceedings Papers
Proc. ASME. GT2019, Volume 2A: Turbomachinery, V02AT39A018, June 17–21, 2019
Paper No: GT2019-90839
Abstract
Abstract The effects of blade row interactions on stator-mounted instrumentation in axial compressors are investigated using unsteady numerical calculations. The test compressor is an 8-stage machine representative of an aero-engine core compressor. For the unsteady calculations, a 180deg sector (half-annulus) model of the compressor is used. It is shown that the time-mean flow field in the stator leading edge planes is circumferentially non-uniform. The circumferential variations in stagnation pressure and stagnation temperature respectively reach 4.2% and 1.1% of the local mean. Using spatial wave number analysis, the incoming wakes from the upstream stator rows are identified as the dominant source of the circumferential variations in the front and middle of the compressor, while towards the rear of the compressor, the upstream influence of the eight struts in the exit duct becomes dominant. Based on three circumferential probes, the sampling errors for stagnation pressure and stagnation temperature are calculated as a function of the probe locations. Optimization of the probe locations shows that the sampling error can be reduced by up to 77% by circumferentially redistributing the individual probes. The reductions in the sampling errors translate to reductions in the uncertainties of the overall compressor efficiency and inlet flow capacity by up to 50%. Recognizing that data from large-scale unsteady calculations is rarely available in the instrumentation phase for a new test rig or engine, a method for approximating the circumferential variations with single harmonics is presented. The construction of the harmonics is based solely on the knowledge of the number of stators in each row and a small number of equi-spaced probes. It is shown how excursions in the sampling error are reduced by increasing the number of circumferential probes.
Proceedings Papers
Proc. ASME. GT2019, Volume 2B: Turbomachinery, V02BT42A007, June 17–21, 2019
Paper No: GT2019-91866
Abstract
Abstract Boundary layer ingestion has significant potential to reduce fuel burn in aircraft engines. However, designing a fan that can operate in an environment of continuous distortion without aeromechanical failure is a critical challenge. Capturing the requisite aeromechanical flow features in a high-fidelity computational setting is necessary in validating satisfactory designs as well as determining possible regions for overall improvement. In the current work, a three-dimensional, time-accurate, Reynolds-averaged Navier-Stokes computational fluid dynamic code is utilized to study a distortion-tolerant fan coupled to a boundary layer ingesting inlet. The comparison between this coupled inlet-fan and a previous fan-only simulation will provide insight into the changes in aeromechanic response of the fan blades. Additionally, comparisons to previous wind tunnel tests are made to provide validation of inlet distortion as seen by the distortion-tolerant fan. A resonant crossing was also investigated for the 85% speed operational line condition to compare resonant response between the inlet-fan, fan-only, and experiment. A decrease in maximum tip displacement is observed in the forced response of the coupled inlet-fan compared to the fan-only simulation. The predicted maximum tip displacement was still below the upper limit on the range observed in the wind tunnel tests but matched well with the average tip displacement value of 27.6 mils. A single mode was chosen at the 100% speed condition to provide insight into the effects that the inlet duct has on fan stability. Near stall and near choke conditions were also simulated to observe how the changes of progressing along the speed line affects flutter stability prediction. The analysis shows the fan has low levels of aerodynamic damping at all the conditions tested. However, the coupled inlet-fan shows a decrease in the level of aerodynamic damping over what was observed with the fan-only simulation. Some of the blades experienced single cycles of negative aerodamping which indicate a possibility of increased blade vibration amplitude but were followed by positive aerodamping cycles. Work is continuing to understand possible sources to account for the differences observed between the two simulation cases as well as with the experiment.
Proceedings Papers
Proc. ASME. GT2019, Volume 2B: Turbomachinery, V02BT40A003, June 17–21, 2019
Paper No: GT2019-90342
Abstract
Abstract As the load of the turbine components of aircraft engines continuously increases, shock loss becomes the dominant factor of turbine stage loss and has become a hot topic. Schlieren technique is one of the few effective experimental methods to observe and study shock wave and, thus, has been widely used. Nevertheless, limited by camera accuracy and computer image processing technology, quantitative schlieren analysis methods were difficult to achieve in engineering applications. Fortunately, several quantitative schlieren methods have been developed with the help of new digital technology. Applying schlieren technique to the highly-loaded turbine cascade test is of great significance to the study of shock wave in highly-loaded turbine cascades. In this paper, the results of quantitative density field and shock intensity and loss in the cascade are obtained by using a double reflection type monochrome schlieren device. The boundary condition of density field is obtained by pressure test, and MATLAB software is used as image processing calculation tool. The quantitative results of this paper prove the feasibility of applying quantitative schlieren method to highly-loaded turbine cascade tests. Also, the implemented image processing method and density boundary condition acquisition method are suitable and convenient for cascade flow and shock measurement tests.
Proceedings Papers
Alberto Scotti Del Greco, Tomasz Jurek, Daniele Di Benedetto, Vittorio Michelassi, Giacomo Ragni, Enrico Beghini, Maria Vittoria Borghesi
Proc. ASME. GT2019, Volume 2B: Turbomachinery, V02BT40A017, June 17–21, 2019
Paper No: GT2019-91262
Abstract
Abstract The demand for gas-turbine (GT) based flexible power generation and mechanical drive is increasing due to the growing penetration of renewables and due to the need to quickly adjust production and operate at part load respectively. As efficiency operability low emissions, small footprint, availability and maintainability are of paramount importance, engine designers are leaning towards aircraft engine architectures that, with appropriate modifications mostly to the combustion system and turbine, can meet market needs. To leverage the large experience from aircraft propulsion, aero-derivative engines maintain the same architecture, with a high-speed shaft core, and a low-speed shaft driven by a multi-stage low-pressure turbine. While in aircraft engines power is adjusted by changing fuel rate and shaft speed, that go hand in hand, mechanical drive engines have more stringent needs that require changing the delivered power by keeping the shaft speed under control to guarantee the operation of the driven equipment (an LNG compressor or an electric generator). Therefore, the power turbine may deliver exit flow profiles and angles that put the turbine exhaust diffuser under severe off-design conditions, with the onset of large scale separations, large kinetic losses, and ultimately a significant drop on cycle performance. This paper describes Baker Hughes, a GE company experience in the CFD assisted design and scale-down testing of aero-derivative exhaust diffusers. The design incorporates the requirements of hot-end mechanical drive in multiple the power turbine operating conditions to determine the best compromise between peak design performance and off-design operability. The test in similitude conditions considered four relevant operating points. The inlet conditions matched with the power turbine exit profiles by the concerted action of swirl vanes and perforated plates, the design of which was heavily CFD assisted. Predictions matched measurements in terms of pressure recovery, kinetic losses, and exhaust velocity profiles. Different data post-processing and averaging were considered to properly factor in the diffuser losses into the overall turbine performance.
Proceedings Papers
Proc. ASME. GT2019, Volume 2B: Turbomachinery, V02BT40A006, June 17–21, 2019
Paper No: GT2019-90408
Abstract
Abstract This study carries out parametric investigations on aerodynamic loss of various types of LP turbine airfoils characterized with different flow deceleration rates (DR) on their suction surfaces under the realistic flow conditions such as wake inflow and freestream turbulence. The Reynolds number examined in this study ranges from 57,000 to 170,000. As for the freestream turbulence, two levels of the turbulence are used, i.e., about 1.2% and 3.5%. Stagnation pressure distributions downstream of each of the airfoil cascades are measured by use of a Pitot tube, while steady-state and unsteady boundary-layers are measured over the rear part of suction surface and pressure side near the trailing edge using a single hot-wire probe. The measured boundary-layer data are used to estimate the cascade loss along with RANS (Reynolds-Averaged Navier-Stokes) simulations by taking advantage of the momentum-theory based Denton’s method. First, relationships between the cascade loss for each flow condition and DR are examined. The estimated loss values are then compared with the measured cascade loss to check the validity of the loss estimation method, which is a derivative of Denton’s method, under the realistic flow conditions.
Proceedings Papers
Simon Gövert, Federica Ferraro, Alexander Krumme, Clemens Buske, Marc Tegeler, Frank Kocian, Francesca di Mare
Proc. ASME. GT2019, Volume 2B: Turbomachinery, V02BT42A005, June 17–21, 2019
Paper No: GT2019-90736
Abstract
Abstract Reducing the uncertainties in the prediction of turbine inlet conditions is a crucial aspect to improve aero engine designs and further increase engine efficiencies. To meet constantly stricter emission regulations, lean burn combustion could play a key role for future engine designs. However, these combustion systems are characterized by significant swirl for flame stabilization and reduced cooling air mass flows. As a result, substantial spatial and transient variations of the turbine inlet conditions are encountered. To investigate the effect of the combustor on the high pressure turbine, a rotating cooled transonic high-pressure configuration has been designed and investigated experimentally at the DLR turbine test facility ‘NG-Turb’ in Göttingen, Germany. It is a rotating full annular 1.5 stage turbine configuration which is coupled to a combustor simulator. The combustor simulator is designed to create turbine inlet conditions which are hydrodynamically representative for a lean-burn aero engine. A detailed description of the test rig and its instrumentation as well as a discussion of the measurement results is presented in part I of this paper. Part II focuses on numerical modeling of the test rig to further extend the understanding of the measurement results. Integrated simulations of the configuration including combustor simulator and nozzle guide vanes are performed for leading edge and passage clocking position and the effect on the hot streak migration is discussed. The simulation and experimental results at the combustor-turbine interface are compared showing a good overall agreement. The relevant flow features are correctly predicted in the simulations, proving the suitability of the numerical model for application to integrated combustor-turbine interaction analysis.
Proceedings Papers
Proc. ASME. GT2019, Volume 2B: Turbomachinery, V02BT40A018, June 17–21, 2019
Paper No: GT2019-91263
Abstract
Abstract Detonative Pressure Gain Combustion has the potential to increase the propulsion efficiency of aero-engines and the thermal efficiency of stationary gas turbines. Important advances were made in this field, especially in the case of Rotating Detonation Combustion (RDC). Although experimental and numerical studies reported in the literature have significantly increased in number, the major open problem is a lack of efficient turbomachinery to transform the fluctuating potential energy from an RDC into power output. For this problem to be properly addressed, time resolved data at the outlet of an RDC needs to be collected. As a first step, numerical data can be used to generate a geometry for the turbine, which must be validated experimentally. To determine the performance of a turbine vane row, total pressure losses need to be measured. There are several challenges in measuring the total pressure between the outlet of an RDC and the inlet of a turbine vane row. The high temperature values, the distance of the pressure transducer from the outlet of the combustor lead to a lower time resolution of the pressure signal. The confined space is also an issue, allowing for very few options in measuring the total pressure. Another major problem is the shock wave that may form as a detached shock wave with respect to the body of the pressure probe at certain moments in the flow cycle, which leads to measuring a different value rather than the actual value of the flow field. To address these issues, the current study presents a numerical investigation of a guide vane row that was experimentally tested at the outlet of an RDC working on hydrogen and air under stoichiometric conditions. One of the vane rows was 3D printed with a geometry allowing the measurement of total pressure. Static pressure at the outlet of the RDC was also measured. It was observed that the measured pressures are average values in time. Based on these averages, the total inlet pressure and velocity variations in time were reconstructed in an exponential trend, according to the ones reported in the literature and the aforementioned experiments. These variations were set as inlet conditions for transient numerical simulations. Results show that the total pressure amplitude decreases significantly when the flow passes the annulus and the vanes as well. By looking in to the flow field detail, the presence of shock wave in front of the blade is investigated. Additionally, it is calculated that the average total pressure decreases 7.9% by the vane row.
Proceedings Papers
Proc. ASME. GT2019, Volume 2C: Turbomachinery, V02CT41A022, June 17–21, 2019
Paper No: GT2019-90908
Abstract
Abstract The intended operating point of turbomachinery is subject to numerous kinds of uncertainty. These range from varying ambient conditions, across geometric deviations in a component, to system related loading variability resulting in engine-to-engine variation in component matching. In order to guarantee safe operation at all conditions, it is essential to consider the above uncertainties when designing turbomachinery. In the present work, a probabilistic assessment is performed of the influence of possible operational uncertainties on the aerodynamic performance metrics of an aero-engine multistage high pressure compressor (HPC). To propagate uncertainties, Monte Carlo simulations (MCS) with Latin Hypercube Sampling (LHS) were performed, with both correlated and uncorrelated inputs. Each sample consisted of a steady state computational fluid dynamics (CFD) evaluation of the compressor. The statistical input for the boundary conditions was acquired from a MCS of the engine cycle performance at cruise, accounting for flight-to-flight variations in ambient conditions and engine-to-engine variations in component properties. With the chosen approach, it is possible to quantify the variability in aerodynamic performance of an HPC that is subject to uncertain operating conditions and thus shows the importance of input correlations. Results highlight that deterministically determined performance metrics can differ considerably from the statistical mean, revealing the benefits of a probabilistic assessment. In contrast to performing MCS on the cycle only, a CFD based assessment can also be used to draw conclusions on the aerodynamic mechanisms responsible for changes in efficiency or surge margin.
Proceedings Papers
Luigi Romagnosi, Yingchen Li, Mohamed Mezine, Mateus Teixeira, Stephane Vilmin, Jan E. Anker, Kilian Claramunt, Yannick Baux, Charles Hirsch
Proc. ASME. GT2019, Volume 2C: Turbomachinery, V02CT41A002, June 17–21, 2019
Paper No: GT2019-90110
Abstract
Abstract With the increase of computational power, more sophisticated computational methods can be used, larger systems simulated, and complex phenomena predicted more reliably. Nevertheless, up to now, when turbomachinery systems are numerically optimized, each of the components, i.e., the compressor, combustor, and turbine, is simulated separately from the other two. While this approach allows the use of highly dedicated simulation tools, it does not account for the interactions between the different components. With the purpose to meet the future requirements in terms of low emissions, high reliability and efficiency, a novel, highly efficient, fully-coupled, approach based on the Reynolds-Averaged Navier-Stokes equations (RANS) has been developed, enabling a steady or time-accurate simulation of a full aero-engine within a single code. One of the advantages of a steady, fully coupled approach over a steady component-by-component approach, is that the boundary conditions at the interfaces do not need to be guessed. A fully coupled, time-accurate simulation has furthermore the advantage that the effect of the non-uniform temperature distribution at the outlet of the combustor is accounted for in the determination of the thermal field of the turbine. A Smart Interface methodology permits a direct coupling between the different engine components, compressor-combustor-turbine, and allows the Computational Fluid Dynamics (CFD) models to vary between each component within the same code. This allows the user to switch off, for instance, the combustion model in the turbine and compressor blocks. For the simulation of the combustion process, the Flamelet Generated Manifold (FGM) method is applied. While the approach is superior to classical tabulated chemistry approaches and reliably captures finite-rate effects, it is computationally inexpensive since it only requires the solution of a few extra scalars and the look-up of a combustion table. The model has been extended so that high-speed compressible flows can be simulated and the potential effects between the combustor and the adjacent blade rows can be accounted for. The Nonlinear Harmonic (NLH) method is used to model the unsteady interactions between the blade rows as well as the influence of the inhomogeneities at the combustor outlet on the downstream turbine blade rows. Compared to conventional time-accurate RANS simulations (URANS), this method is two to three orders of magnitude faster and makes time-accurate turbomachinery simulations affordable. With the aim of ensuring thermodynamic consistency between the different components of the engine, the same form of the energy equation is solved in all engine elements. Furthermore, the same thermodynamic coefficients, which are used to describe the reacting processes in the combustor, are used for a caloric description of the fluid in the compressor and turbine blocks. The thermodynamic data between the blocks is transferred using the OpenLabs™ module. The developed approach is described in detail and the potential of the novel full-engine methodology is exploited on the KJ66 micro-turbine gas engine case. The results of both the steady and the time-accurate, fully coupled approaches are analyzed and the interaction between the different components of the KJ66 engine discussed.
Proceedings Papers
Proc. ASME. GT2019, Volume 2C: Turbomachinery, V02CT41A014, June 17–21, 2019
Paper No: GT2019-90325
Abstract
Abstract Modern aero-engines are characterized by compact components (fan, compressor, combustor, and turbine). Such proximity creates a complex interaction between the components and poses a modeling challenge due to the difficulties in identifying a clear interface between components since they are usually modeled separately. From a numerical point of view, the simulation of a complex compact aero-engine system requires interaction between these individual components, especially the combustor-turbine interaction. The combustor is characterized by a subsonic chemically reacting and swirling flow while the high-pressure turbine (HPT) stage has flow which is transonic. Furthermore, the simulation of combustor-turbine interactions is more challenging due to aggressive flow conditions such as non-uniform temperature, non-uniform total-pressure, strong swirl, and high turbulence intensity. The simulation of aero-engines, where combustor-turbine interactions are important, requires a methodology that can be used in a real engine framework while ensuring numerical requirements of accuracy and stability. Conventionally, such a simulation is carried out using one of the two approaches: a combined simulation (or joint-simulation) of the combustor and the HPT geometries, or a co-simulation between the combustor and the turbine with the exchange of boundary conditions between these two separate domains. The primary objective of this paper is to assess the effectiveness of the joint simulation versus the co-simulation and propose a more practical approach for modeling combustor and turbine interactions. First, a detailed grid independence study with hexahedral and polyhedral meshes is performed to select the required polyhedral mesh. Then, an optimal location of the interface between the combustor and the nozzle guide vane (NGV) is identified. Co-simulations are then performed by exchanging information between the combustor and the NGV at the interface, wherein the combustor is solved using LES while the NGV is solved using RANS. The joint combustor-NGV simulations are solved using LES. The effect of the combustor-NGV interaction on the flow field and hot streak migration is analyzed. The results suggest that the joint simulation is computationally efficient and more accurate since both components are modelled together.
Proceedings Papers
Proc. ASME. GT2019, Volume 2C: Turbomachinery, V02CT41A005, June 17–21, 2019
Paper No: GT2019-90146
Abstract
Abstract This paper presents a new hybrid two-phase flow numerical model. It uses the Discrete Phase Model (DPM) and the Volume of Fluid model (VoF) to study the interaction between air, oil droplets and films in a bearing compartment. It allows transition from a trackable Lagrangian particle, such as a droplet, into a continuous liquid structure in a Eulerian frame of reference. The transition can also be performed in the opposite direction, where a continuous liquid structure can be converted back into a trackable particle if specific requirements are met. The method is designated as DPM-VoF-DPM throughout this paper. Test cases capturing the impingement of a droplet in a liquid film are performed to assess its effectiveness. The simulation of a simplified bearing compartment is compared with measurements and results obtained using a standard VoF modeling approach. Mechanisms which are usually modeled such as droplet splashing, film separation, and droplet stripping, can now be physically captured with reduced computing resources by allowing transition from continuous liquid structures to discrete parcels. The employed modeling strategy allows for high resolution of the oil film at the walls and tracking of the droplets while minimizing mesh size and computing needs. Current results suggest that the proposed DPM-VoF-DPM method can be an efficient and accurate tool for locating air and oil in aero-engine transmission systems.