The scope of the present work is to characterize the heat transfer between a ribbed surface and an air flow. The convective heat transfer coefficients, the Stanton number and the Nusselt number were calculated in the Reynolds number range, 5.13 × 105 to 1.02 × 106.
The tests were performed inside a turbulent wind tunnel with one roughness height (e/Dh = 0.07). The ribs had triangular section with an attack angle of 60°.
The surface temperatures were measured using an infrared (IR) thermographic equipment, which allows the measurement of the temperature with a good spatial definition (10.24 × 10−6 m2) and a resolution of 0.1°C.
The experimental measures allowed the calculation of the convective heat transfer coefficient, the Stanton number and the Nusselt number. The results obtained suggested a flow pattern that includes both reattachment and recirculation. Low values of the dimensionless Stanton number, i.e. Stx*, are obtained at the recirculation zones and very high values of Stx* at the zones of reattachment. The reattachment is located at a dimensionless distance of 0.38 from the top of the rib. That distance seems to be independent of the Reynolds number. The local dimensionless Stanton number remains constant as the Reynolds number varies.
The convective heat transfer coefficient presents an uncertainty in the range of 3 to 6%.