Humid Air Turbine cycle (HAT) is characterised by its high single cycle efficiency. The HAT cycle is typically constrained by a pinch point at low temperature. This indicates that additional heat in the range 100 °C to 200 °C can be utilised with high marginal efficiency. At the same time energy intensive industries (for example refineries, Cement production plants and Steel works) typically have a surplus of heat from around 250 °C to 300 °C and down. This study is aimed at the integration of HAT Cycle into the industrial process plant where the complementary features can be exploited. The present paper has two main objectives. The first objective is to present a general approach for integration analysis. The approach is based on conceptual design using targeting procedures (e.g. Pinch Analysis). The second objective is to find an optimum integration scheme for specific heat sources available from industrial sites. To illustrate both objectives a case study based on real refinery data is discussed.

This content is only available via PDF.