Computer models have been used to analyze the thermodynamic performance of a gas turbine (GT) cogeneration system and an internal combustion engine (IC) cogeneration system. The purpose of this study was to determine the effect of thermal matching of the load (i.e., required thermal energy) and the output steam fraction (fraction of the thermal output, steam and hot water, which is steam) on the thermodynamic performance of typical cogeneration systems at both full and partial output.

The thermodynamic parameters considered were; the net heat rate (NHR), the power to heat ratio (PHR), and the fuel savings rate (FSR). With direct use (the steam fractions being different); the NHR of these two systems is similar at full output, the NHR of the IC systems is lower at partial output, and the PHR and the FSR of the GT systems is lower than the IC systems over the full range of operating conditions. With thermal matching (to produce a given steam fraction) the most favorable NHR, PHR, and FSR depends on the method of matching the load to the thermal output.

This content is only available via PDF.