A new hyperbolic function discretization equation for two dimensional Navier-Stokes equation in the stream function vorticity from is derived. The basic idea of this method is to integrat the total flux of the general variable ϕ in the differential equations, then incorporate the local analytic solutions in hyperbolic function for the one-dimensional linearized transport equation. The hyperbolic discretization (HD) scheme can more accurately represent the conservation and transport properties of the governing equation. The method is tested in a range of Reynolds number (Re=100~2000) using the viscous incompressible flow in a square cavity. It is proved that the HD scheme is stable for moderately high Reynolds number and accurate even for coarse grids. After some proper extension, the method is applied to predict the flow field in a new type combustor with air blast double-vortex and obtained some useful results.

This content is only available via PDF.