In a test facility for rotating annular cascades with three conical test sections of different taper angles (0°, 30°, 45°), experiments are conducted for two geometrically different turbine cascade configurations, a hub section cascade with high deflection and a tip section cascade with low deflection. The evaluation of time averaged data derived from conventional probe measurements upstream and downstream of the test wheel in the machine-fixed absolute system is based on the assumption of axisymmetric stream surfaces. The cascade characteristics, i.e. mass flow, deflection and losses, for a wide range of inlet flow angles and outlet Mach numbers are provided in the blade-fixed relative system with respect to the influence of annulus taper. Some of the results are compared with simple theoretical calculations. To obtain some informations about the spatial structure of the flow within the cascade passages, surface pressure distributions on the profiles of the rotating test wheels are measured at three different radial blade sections. For some examples those distributions are compared with numerical results on plane cascades of the same sweep and dihedral angles and the same aspect ratios. The computer code used is based on a three-dimensional time-marching finite-volume method solving the Euler equations. Both experimental and numerical results show a fairly good qualitative agreement in the three-dimensional blade surface pressure distributions. This work will be continued with detailed investigations on the spatial flow structure.

This content is only available via PDF.