The hydraulic analogy was employed in a rotating water table for simulating the compressible two dimensional flow in a low pressure turbine stage. Both steady and unsteady forces were measured directly on a rotating blade in a blade row rotating concentrically with a row of stator vanes. With proper modeling of the simulation, it is shown that the rotating water table can yield results that agree favorably with the analytical predictions and turbine test results. Using this test facility, the effects of axial spacing between rotor and stator rows on the nozzle wake excitation have been investigated for two different stator vane profiles. The water table test results correlate qualitatively with the turbine test data. The cancellation of nozzle passing frequency excitation by off-setting nozzle pitch was demonstrated in the water table and the results compared with both the analytical predictions and the laboratory turbine test results.

This content is only available via PDF.