Recent advances in experimental methods have allowed researchers to study nozzle guide vane film cooling in the presence of combustor dilution ports and endwall films. The dilution injection creates nonuniformities in temperature, velocity, and turbulence, and an understanding of the vane film cooling performance is complicated by competing influences. In this study, dilution port temperature profiles have been measured in the absence of vane film cooling and compared to film effectiveness measurements in the presence of both films and dilution, illustrating the effects of the dilution port turbulence on film cooling performance. It is found that dilution port injection can create significant effectiveness benefits at the difficult-to-cool vane stagnation region, due to the more turbulent hot mainstream enhancing the mixing of film coolant jets that have left the airfoil surface.

Also explored are the implications of endwall film cooling for infrared vane surface temperature measurements. The reduced endwall temperatures reduce the thermal emissions from this surface, so reducing the amount of extraneous radiation reflected from the vane surface where measurements are being made. The results of a detailed calibration show that the maximum local film effectiveness measurement error could be up to 0.05 if this effect were to go unaccounted for.

This content is only available via PDF.