The leakage flows within the gap between the tips of unshrouded rotor blades and the stationary casing of high-speed turbines are the source of significant aerodynamic losses and thermal stresses. In the pursuit for higher component performance and reliability, shaping the tip geometry offers a considerable potential to modulate the rotor tip flows and to weaken the heat transfer onto the blade and casing. Nevertheless, a critical shortage of combined experimental and numerical studies addressing the flow and loss generation mechanisms of advanced tip profiles persists in the open literature.

A comprehensive study is presented in this two-part paper that investigates the influence of blade tip geometry on the aerother-modynamics of a high-speed turbine. An experimental and numerical campaign has been performed on a high-pressure turbine stage adopting three different blade tip profiles. The aerothermal performance of two optimized tip geometries (one with a full three-dimensional contoured shape and the other featuring a multi-cavity squealer-like tip) is compared against that of a regular squealer geometry.

In the second part of this paper, we report a detailed analysis on the aerodynamics of the turbine as a function of the blade tip geometry. Reynolds-averaged Navier-Stokes simulations, adopting the Spalart-Allmaras turbulence model and experimental boundary conditions, were run on high-density unstructured meshes using the Numeca FINE/Open solver. The simulations were validated against time-averaged and time-resolved experimental data collected in an instrumented turbine stage specifically set up for the simultaneous testing of multiple blade tips at scaled engine-representative conditions. The tip flow physics is explored to explain variations in turbine performance as a function of the tip geometry. Denton’s mixing loss model is applied to the predicted tip gap aerodynamic field to identify and quantify the loss reduction mechanisms of the alternative tip designs. An advanced method based on the local triple decomposition of relative motion is used to track the location, size and intensity of the vortical flow structures arising from the interaction between the tip leakage flow and the main gas path. Ultimately, the comparison between the unconventional tip profiles and the baseline squealer tip highlights distinct aerodynamic features in the associated gap flow field. The flow analysis provides guidelines for the designer to assess the impact of specific tip design strategies on the turbine aerodynamics and rotor heat transfer.

This content is only available via PDF.