The adiabatic, unstrained, laminar flame speed, SL, is a fundamental combustion property, and a premier target for the development and validation of thermochemical mechanisms. It is one of the leading parameters determining the turbulent flame speed, the flame position in burners and combustors, and the occurrence of transient processes, such as flashback and blowout. At pressures relevant to gas turbine engines, SL is generally extracted from the continuous expansion of a spherical reaction front in a combustion bomb. However, independent measurements obtained in different types of apparatuses are required to fully constrain thermochemical mechanisms. Here, a jet-wall, stagnation burner designed for operation at gas turbine relevant conditions is presented, and used to assess the reactivity of premixed, lean-to-rich, methane-air flames at pressures up to 16 atm. One-dimensional (1D) profiles of axial velocity are obtained on the centreline axis of the jet-wall burner using Particle Tracking Velocimetry, and compared to quasi-1D flame simulations performed with a selection of thermochemical mechanisms available in the literature. Significant discrepancies are observed between the numerical and experimental data, and among the predictions of the mechanisms. This motivates further chemical modeling efforts, and implies that designers in industry must carefully select the mechanisms employed for the development of gas turbine combustors.

This content is only available via PDF.