Selection criteria and design evaluations of several types of bearing dampers with active control for application to aircraft engines were described in a companion paper (Vance, Ying, and Nikolajsen, 1999). A disk type electrorheological (ER) damper was chosen for further study and testing. The results of the tests and the final conclusions of the study are described in this paper. Experimental results including stiffness and damping coefficients are presented for the ER bearing damper with two types of ER fluid, 350 CS and 10 CS (centistokes) viscosity. The vibration attenuation performance of the ER damper was measured on a rotordynamic test rig in the form of free vibration decay, rotor orbits, and runup unbalance responses. The results show that the ER fluid with lower viscosity has the better characteristics for rotordynamic applications. It was found that ER fluids produce both Coulomb and viscous damping. If only the damping is considered, the Coulomb type is less desirable, but with active control it can also achieve control of rotor stiffness as analyzed in Vance and San Andres (1999). A feedback control system was developed and applied to the ER damper with the objective of improving the overall rotordynamic performance of the rotor bearing system, considering both vibration amplitudes and dynamic bearing forces. A “bang-bang” (on and off) simple control logic was found to work better in practice than more sophisticated schemes. The measured runup responses of the rotor-bearing system with this control approximated the desired vibration response curves fairly well. The tests highlighted some of the practical considerations that would be important for aircraft engine applications, such as the ER fluid limitations, the electrical power supply requirements, the electrical insulation requirements, the nonlinear relationship between the voltage and the damping, and the relative benefits of active control. It is concluded that active control of bearing damping is probably not a practical improvement over the passive squeeze film dampers currently used in most aircraft gas turbine engines.
Skip Nav Destination
ASME 1999 International Gas Turbine and Aeroengine Congress and Exhibition
June 7–10, 1999
Indianapolis, Indiana, USA
Conference Sponsors:
- International Gas Turbine Institute
ISBN:
978-0-7918-7861-3
PROCEEDINGS PAPER
Experimental Measurements of Actively Controlled Bearing Damping With an Electrorheological Fluid
Daniel Ying
Daniel Ying
ABB Power Generation, Inc.
Search for other works by this author on:
John M. Vance
Texas A & M University
Daniel Ying
ABB Power Generation, Inc.
Paper No:
99-GT-017, V004T03A003; 10 pages
Published Online:
December 16, 2014
Citation
Vance, JM, & Ying, D. "Experimental Measurements of Actively Controlled Bearing Damping With an Electrorheological Fluid." Proceedings of the ASME 1999 International Gas Turbine and Aeroengine Congress and Exhibition. Volume 4: Manufacturing Materials and Metallurgy; Ceramics; Structures and Dynamics; Controls, Diagnostics and Instrumentation; Education; IGTI Scholar Award; General. Indianapolis, Indiana, USA. June 7–10, 1999. V004T03A003. ASME. https://doi.org/10.1115/99-GT-017
Download citation file:
216
Views
Related Proceedings Papers
Related Articles
Experimental Measurements of Actively Controlled Bearing Damping With an Electrorheological Fluid
J. Eng. Gas Turbines Power (April,2000)
Imbalance Response of a Test Rotor Supported on Squeeze Film Dampers
J. Eng. Gas Turbines Power (April,1998)
Rotordynamic Force Coefficients of Pocket Damper Seals
J. Turbomach (October,2006)
Related Chapters
Summary and Conclusions
Bearing Dynamic Coefficients in Rotordynamics: Computation Methods and Practical Applications
Fundamentals of Structural Dynamics
Flow Induced Vibration of Power and Process Plant Components: A Practical Workbook
Development of New Process and Product Monitoring Technologies for the Manufacturing of High Value Alloy Steels for Use in Critical Applications
Bearing and Transmission Steels Technology