Application of thin-film thermocouples and temperature sensitive paint to surface temperature and heat transfer rate measurement on a flat plate with internal cooling is described in this paper. The test arrangement was designed to model flow and heat transfer conditions in terms of gas (external) and coolant (internal) Reynolds numbers that are typical for cooled turbine components. The test article is geometrically simple; however, from the heat transfer point of view it represents a fairly complex case. For both flows, internal and external, the hydrodynamic boundary layers start well ahead of the thermal boundary layers. The thermally active surface is preceded by an adiabatic starting length. Also, the heat transfer occurs under nonisothermal wall conditions and nonuniform heat flux conditions. The heat transfer experiments were carried out for a range of Mach number and Reynolds number on the gas side from 0.17 to 0.53 and from 135 000 to 580 000, respectively. On the coolant side, the corresponding ranges were from 0.3 to 0.52 for the flow Mach number, and from 20 000 to 65 000 for the Reynolds number. Measured bulk heat transfer rates demonstrated expected trends as functions of external (gas) and internal (coolant) Reynolds numbers. Local heat transfer rates measured along the mid-span line behaved as expected in relation to the internal (coolant) Reynolds number. However, they seem to be insensitive to changes in the external (gas) Reynolds number — at least for the particular test arrangement. Local heat transfer rates, however, strongly depend on the location with respect to the width of the cooling passage. These results were not expected; they may be caused by three dimensional nature of heat convection and conduction in this test arrangement.

This content is only available via PDF.