As a part of a more complex research program systematic isothermal investigations on the aerodynamics and heat transfer of a large scale turbine cascade with suction side film cooling were carried out. The film cooling through a row of holes at forty percent chord length on the suction side was supplied by a large plenum chamber. Two injection geometries were hitherto tested and evaluated: cylindrical holes with thirty respectively fifty degrees axial inclination angle and no lateral inclination. Typical engine conditions for the Mach and Reynolds number as well as the inlet turbulence level were maintained.
The aerodynamic studies are based on steady state pressure measurements. The static profile pressure distribution together with oil-and-dye flow visualisation gives information on the surface flow conditions and boundary layer development especially in the near hole region. The measured data also comprise local and integral total pressure loss coefficients obtained by pressure probe traversing at mid span downstream of the cascade. The heat transfer examination set-up is based on the steady state liquid crystal technique using a compound of a thermochromic sheet combined with an electrical surface heating layer attached on an adiabatic blade corpus. Two dimensional pseudo colour plots are used for the documentation of the local surface heat transfer coefficient distribution and hot spot estimation. Laterally averaged and statistically analysed data of the surface heat transfer is applied in overall heat transfer examinations.
All this data is used for a joint aerodynamic flow and surface heat transfer optimisation of a blowing configuration in suction side film cooled turbine cascade.
The most important conclusions can be summarised as follows: Aiming at an optimised design of cylindrical film cooling configurations the axial inclination of the holes should be kept low thus diminishing the suction peak value at the cooling position in the profile pressure distribution and decreasing the mainstream deceleration area upstream of the jets. This also leads to reduced total pressure losses. Through the high influence of the blowing on the aerodynamics the flow in the near hole mixing region is highly three-dimensional. This shows significant effects in the two-dimensional surface distribution and the laterally averaged heat transfer coefficient.
Oil-and-dye pictures confirm the observations qualitatively.