The discharge coefficient of a long orifice in a rotating system is measured to examine the rotational effect on discharge behavior. The rotating system is comprised of a rotating disk and two stators on both sides of the rotating disk. Test rig is constructed to simulate the real turbine operating conditions. Pressure ratios between upstream and downstream cavities of the orifice range from 1.05 to 1.8, and rotational speed of the rotor disk is varied up to 10,000 rpm. The orifice hole bored through the rotor disk has length-to-diameter ratio of 10. For a better interpretation of discharge behavior, three-dimensional velocity field in the downstream and upstream cavities of the rotor is measured using a Laser Doppler Velocimetry. A new definition of the rotational discharge coefficient is introduced to consider the momentum transfer from the rotor to the orifice flow. Additional loss in the discharge coefficient due to pressure loss in the orifice hole at the inlet and exit regions is quantitatively presented in terms of the Rotation number and the compressibility factor. The effect of comer radiusing at the orifice inlet is also investigated at various rotational conditions.

This content is only available via PDF.