Bulk flow pulsations in the form of sinusoidal variations of velocity and static pressure at injectant Strouhal numbers from 0.8 to 10.0 are investigated as they affect film cooling from a single row of simple angle holes. Similar flow variations are produced by potential flow interactions and passing shock waves near turbine surfaces in gas turbine engines. Time-averaged temperature distributions, phase-averaged temperature distributions, adiabatic film cooling effectiveness values, and iso-energetic Stanton numbers show that important alterations to film cooling protection occur as pulsation frequency, coolant Strouhal number, blowing ratio, and non-dimensional injection hole length are changed. Overall, the pulsations affect film performance end behavior more significantly both as L/D decreases, and as blowing ratio decreases.

This content is only available via PDF.