Rotating stall and surge limit the operating range of a compressor towards low throughflow and high pressure in the performance map. Usually a safety margin must be observed to prevent the compressor from entering unintentionally aerodynamic instabilities. As the range of highest performance and efficiency lies in the vicinity of the stability limit, efforts concentrate on recognizing imminent onset of unstable operation prior to its occurrence.
The present investigation centers on means of detecting information about onsetting instability from signals of pressure fluctuations in two transonic medium-pressure axial compressors of 3 stages. Fourier-transform-methods as well as artificial neural networks are applied for the data reduction of the time-dependent pressure signals. The methods of investigation presented here detected stall precursors announcing the onset of instability. Some of them seem appropriate to be used in connection with active stall control.