This paper deals with the investigation of wake-disturbed boundary layer on a flat-plate model with an elliptic leading edge. The wakes are generated by the transversely moving bars in front of the test model. Main focus of this paper is on how the wake passage affects the transitional behavior of the boundary layer under the influence of favorable and adverse pressure gradients over the test surface. Detailed measurements of the boundary layer are conducted by use of a hot-wire anemometry. An ensemble-averaging technique is also employed in order to extract the periodic events associated with the wake passage from the acquired data. The previously observed dependence of wake-induced transition on the movement of the wake generating bar is confirmed. It is also found that the wake passage induces a significant change in the flow structure downstream of the flow acceleration region.

This content is only available via PDF.