Infrared (IR) spectra of the exhaust emissions from a static gas turbine engine have been studied using Fourier Transform (FT) spectroscopic techniques. Passive detection of the infrared emission from remote (range ∼ 3 m) hot exhaust gases was obtained non-intrusively using a high spectral resolution (0.25 cm−1) FTIR spectrometer. Remote gas temperatures were determined from their emission spectra using the total radiant flux method or by analysis of rotational line structure. The HITRAN database of atmospheric species was used to model the emission from gas mixtures at the relevant temperatures.
The spatial distribution of molecular species across a section transverse to the exhaust plume −10 cm downstream of the jet pipe nozzle was studied using a tomographic reconstruction procedure. Spectra of the infrared emission from the plume were taken along a number of transverse lines of sight from the centreline of the engine outwards. A mathematical matrix inversion technique was applied to reconstruct the molecular concentrations of CO and CO2 in concentric regions about the centreline.
Quantitative measurements of the molecular species concentrations determined non-intrusively were compared with results from conventional extractive sampling techniques.