To increase the understanding of the aerodynamic processes dominating the flow field of turbine bladings with leading edge film cooling, isothermal investigations were carried out on a large scale high pressure turbine cascade. Near the stagnation point the blades are equipped with one row of film cooling holes on the suction side and one on the pressure side. Blowing ratio, turbulence intensity, Mach number, and Reynolds number are set to values typically found in modern gas turbines. Experimental data of the cascade flow were obtained by pneumatic probes and static pressure tappings. The flow field was visualized by Schlieren and oil flow techniques. For detailed investigations near the blowing holes the Laser Transit Velocimetry and the three dimensional Hot Wire Anemometry were used.
The flow field measurements in the near hole region of the suction side show the typical kidney shaped vortex pair. A local suction peak on the pressure side causes a large recirculation area behind the holes on the pressure side and induces separation bubbles in between the pressure side holes. This leads to the generation of two pairs of vortices: The kidney-vortex is located on top of a second vortex pair and a trough flow that fills up the deficit of the recirculation. Thus the film cooling air is detached from the pressure side surface. In addition to the mean flow vectors Reynolds stress components are a good means to judge the propagation of the jet. In spite of the complex flow pattern occurring on each single jet, the surveyed loss-increase due to the leading edge blowing can be predicted by the mixing layer model.