In order to verify an inverse design concept for modern compressor bladings, a subsonic compressor front stage with IGV was investigated.

One objective of the design was to survey the flow field in detail, with emphasis on 3D viscous and unsteady aspects of the flow. Therefore, the compressor was equipped with various steady and unsteady measurement techniques. Additionally, a compressor design was chosen that allows an extension up to three stages with regard to the investigation of multistage axial compressor flow behavior.

Test results of the steady measurements are discussed for IGV, rotor, and stator flow at design conditions as well as the overall stage performance. The measurements of the steady flow behavior confirm the expected design performance and show the high potential of the controlled diffusion airfoil concept. Only at the side walls near hub and casing there are some differences between design and measurement due to the complex three dimensional flow.

For the study of unsteady effects, detailed measurements using hot-wire probes, glue-on hot-films, and semiconductor pressure transducers were performed. All measurements are evaluated using the ensemble-average technique. The results show how the boundary layers of the inlet guide vanes and stator blades develop in a flow that is periodically disturbed by the rotor. Time-dependent pressure distributions at midspan of both stators are described. In addition, the unsteady pressure field at the casing above the rotor was investigated. The minimum wall pressure is located away from the blade suction surface. The effects of tip clearance flow on the performance are presented. The radial extent covers 15% span from the tip. At rotor exit, the unsteady pressure field and the time-dependent three-dimensional velocity vectors illustrate the salient features of the viscous flow associated with the rotor.

This content is only available via PDF.