Diffusion brazing is a joining process utilized both in the manufacture and repair of turbine blades and vanes. CMSX-4 is an investment cast, single crystal, Ni-based superalloy used for turbine blading and vanes, and has enhanced mechanical properties at elevated temperatures when compared to equiaxed, directionally solidified and first generation single crystal superalloys. The objective of this work was to develop a diffusion brazing procedure to achieve reliable joints in the manufacture of a hollow turbine blade (for a prototype engine in South Africa), and to verify the coatability of the diffusion brazed joints. Two commercially available brazing filler metals of composition Ni-15Cr-3.5B and Ni-7Cr-3Fe-4.5Si-3.2B-0.06C and a proprietary (wide gap) braze were utilized. With the aim of eliminating brittle centre-line boride phases, the effects of temperature and time on the joint microstructure were studied. Once the metallurgy of the joint was understood, tensile and stress rupture tests were undertaken, the latter being one of the severest tests to evaluate joint strength. The results demonstrated that the diffusion brazed joints could satisfy the specified stress rupture criterion of a minimum of 40 hrs life at 925 °C and 200 MPa. After mechanical property evaluations, an investigation into the effects of a low temperature high activity (LTHA) pack aluminide coating and a high temperature low activity (HTLA) pack aluminide coating on the braze joints was undertaken. The results showed that diffusion brazed joints could be readily coated.

This content is only available via PDF.