Compressor stall was simulated in the Low Speed Cascade Wind Tunnel at the Turbopropulsion Laboratory. The test blades were of controlled-diffusion design with a solidity of 1.67, and stalling occurred at 10 degrees of incidence above the design inlet air angle. All measurements were taken at a flow Reynolds number, based on chord length, of 700 000.

Laser-sheet flow visualization techniques showed that the stalling process was unsteady and occurred over the whole cascade. Detailed laser-Doppler-velocimetry measurements over the suction side of the blades showed regions of continuous and intermittent reverse flow. The measurements of the continuous reverse flow region at the leading edge were the first data of their kind in the leading edge separation bubble. The regions of intermittent reverse flow, measured with laser Doppler velocimeter, corresponded to the flow visualization studies. Blade surface pressure measurements showed a decrease in normal force on the blade as would be expected at stall. Data is presented in a form which characterizes the unsteady positive and negative velocities about their mean, for both the continuous reverse flow regions and the intermittent reverse flow regions.

This content is only available via PDF.