An idealized 3 blade test section has been used to study tip clearance effects which occur in transonic axial turbines. At subsonic inlet conditions (Mis1 = 0.56) the flow leaves the test section supersonic (Mis2 = 1.26). The tip clearance was varied from 0 to 15% of the chord length.

Extensive laser-2-focus anemometry was used to determine the tip gap mass flow based on the velocity vectors for gaps with 6, 10 and 15% chord. At small clearances the tip gap flow is mainly influenced by the pressure drop between pressure and suction side, while for larger gaps the main flow field dominates the tip gap flow.

The variation of the blade loading with the tip clearance was measured by static pressure tappings at 50% and 90% Span. Furthermore the static pressure along the tip surface was measured for varying tip clearances.

Pitot probe traverses in the tip vortex region at different downstream positions revealed the vortex structures and vortex core evolution. For tip gaps of 3 and 6%, multiple vortices were detected which were not fully mixed downstream. The origin of these vortices moves towards the trailing edge for larger gaps.

This content is only available via PDF.