A steady/unsteady, three-dimensional Navier-Stokes solver that utilizes a semi-implicit, pressure-based solution procedure is developed to simulate the three-dimensional, incompressible flow through a single stage compressor. The present numerical scheme features the implementation of a second-order plus fourth-order artificial dissipation formulation to prevent the numerical oscillation due to central differencing schemes. A low-Reynolds-number form of the two-equation turbulence model is used to account for the turbulence effects. For unsteady flow computations, the coupling between the mean flow properties and the turbulence is enhanced by an inneriteration procedure during each time step. The steady flow field in the rotor passage is computed first. This is used as input for the computation of the unsteady flow in the subsequent stator. The predicted unsteady pressure on the stator blades and unsteady Velocities at several locations inside the passage are compared with the experimental data. The unsteady pressures on the stator blade surfaces are in good agreement with the experimental data. The predicted unsteady velocity components at various locations inside the stator blade rows are generally smaller than the measured values in the endwall regions. The phase angle variations of the unsteady velocity are in good agreement with the measured values. The effects of the rotor wake, secondary and tip clearance flows on the unsteady flow through the subsequent stator are studied. An attempt is also made to quantify the contributions of incoming tip leakage flows and the endwall boundary layers on the unsteady flow through the downstream stator. It was found that the endwall boundary layers and tip leakage flows have a much stronger influence on the unsteady flow development than the wake.
Skip Nav Destination
ASME 1996 International Gas Turbine and Aeroengine Congress and Exhibition
June 10–13, 1996
Birmingham, UK
Conference Sponsors:
- International Gas Turbine Institute
ISBN:
978-0-7918-7872-9
PROCEEDINGS PAPER
Computation of Three-Dimensional Steady and Unsteady Flow Through a Compressor Stage
Y.-H. Ho,
Y.-H. Ho
The Pennsylvania State University, University Park, PA
Search for other works by this author on:
B. Lakshminarayana
B. Lakshminarayana
The Pennsylvania State University, University Park, PA
Search for other works by this author on:
Y.-H. Ho
The Pennsylvania State University, University Park, PA
B. Lakshminarayana
The Pennsylvania State University, University Park, PA
Paper No:
96-GT-070, V001T01A026; 13 pages
Published Online:
February 6, 2015
Citation
Ho, Y, & Lakshminarayana, B. "Computation of Three-Dimensional Steady and Unsteady Flow Through a Compressor Stage." Proceedings of the ASME 1996 International Gas Turbine and Aeroengine Congress and Exhibition. Volume 1: Turbomachinery. Birmingham, UK. June 10–13, 1996. V001T01A026. ASME. https://doi.org/10.1115/96-GT-070
Download citation file:
130
Views
Related Proceedings Papers
Related Articles
Observations of Transition Phenomena on a Controlled Diffusion Compressor Stator With a Circular Arc Leading Edge
J. Turbomach (July,2010)
Aerodynamic Blade Row Interactions in an Axial Compressor—Part I: Unsteady Boundary Layer Development
J. Turbomach (January,2004)
Unsteady Transition Phenomena at a Compressor Blade Leading Edge
J. Turbomach (April,2008)
Related Chapters
Aerodynamic Performance Analysis
Axial-Flow Compressors
Cavitating Structures at Inception in Turbulent Shear Flow
Proceedings of the 10th International Symposium on Cavitation (CAV2018)
Introduction
Design and Analysis of Centrifugal Compressors