The attainment of very low pollutant emissions, in particular oxides of nitrogen (NOx), from gas turbines is not only of considerable environmental concern but has also become an area of increasing competitiveness between the different engine manufacturers. For stationary engines, the attainment of ultra-low NOx has become the foremost marketing issue. This paper is devoted primarily to current and emerging technologies in the development of ultra-low emissions combustors for application to aircraft and stationary engines. Short descriptions of the basic design features of conventional gas turbine combustors and the methods of fuel injection now in widespread use are followed by a review of fuel spray characteristics and recent developments in the measurement and modeling of these characteristics. The main gas turbine generated pollutants and their mechanisms of formation are described, along with related environmental risks and various issues concerning emissions regulations and recently-enacted legislation for limiting the pollutant levels emitted by both aircraft and stationary engines. The impact of these emissions regulations on combustor and engine design are discussed first in relation to conventional combustors and then in the context of variable-geometry and staged combustors. Both these concepts are founded on emissions reduction by control of flame temperature. Basic approaches to the design of “dry” low NOx and ultra-low NOx combustors are reviewed. At the present time lean, premix, prevaporize, combustion appears to be the only technology available for achieving ultra-low NOx emissions from practical combustors. This concept is discussed in some detail, along with its inherent problems of autoignition, flashback, and acoustic resonance. Attention is also given to alternative methods of achieving ultra-low NOx emissions, notably the rich-bum, quick-quench, lean-burn and catalytic combustors. These concepts are now being actively developed, despite the formidable problems they present in terms of mixing and durability. The final section reviews the various correlations which are now being used to predict the exhaust gas concentrations of the main gaseous pollutant emissions from gas turbine engines. Comprehensive numerical methods have not yet completely displaced these semi-empirical correlations but are nevertheless providing useful insight into the interactions of swirling and recirculating flows with fuel sprays, as well as guidance to the combustion engineer during the design and development stages. Throughout the paper emphasis is placed on the important and sometimes pivotal role played by the fuel preparation process in the reduction of pollutant emissions from gas turbines.
Skip Nav Destination
ASME 1995 International Gas Turbine and Aeroengine Congress and Exposition
June 5–8, 1995
Houston, Texas, USA
Conference Sponsors:
- International Gas Turbine Institute
ISBN:
978-0-7918-7882-8
PROCEEDINGS PAPER
The Role of Fuel Preparation in Low Emissions Combustion
A. H. Lefebvre
A. H. Lefebvre
Purdue University, West Lafayette, IN
Search for other works by this author on:
A. H. Lefebvre
Purdue University, West Lafayette, IN
Paper No:
95-GT-465, V005T17A001; 44 pages
Published Online:
February 16, 2015
Citation
Lefebvre, AH. "The Role of Fuel Preparation in Low Emissions Combustion." Proceedings of the ASME 1995 International Gas Turbine and Aeroengine Congress and Exposition. Volume 5: Manufacturing Materials and Metallurgy; Ceramics; Structures and Dynamics; Controls, Diagnostics and Instrumentation; Education; IGTI Scholar Award. Houston, Texas, USA. June 5–8, 1995. V005T17A001. ASME. https://doi.org/10.1115/95-GT-465
Download citation file:
682
Views
Related Proceedings Papers
Related Articles
The Role of Fuel Preparation in Low-Emission Combustion
J. Eng. Gas Turbines Power (October,1995)
Steady and Dynamic Performance and Emissions of a Variable Geometry Combustor in a Gas Turbine Engine
J. Eng. Gas Turbines Power (October,2003)
25 Years of BBC/ABB/Alstom Lean Premix Combustion Technologies
J. Eng. Gas Turbines Power (January,2007)
Related Chapters
Outlook
Closed-Cycle Gas Turbines: Operating Experience and Future Potential
Reference Method Accuracy and Precision (ReMAP): Phase I
Reference Method Accuracy and Precision (ReMAP): Phase 1 (CRTD Vol. 60)
Introduction
Consensus on Operating Practices for Control of Water and Steam Chemistry in Combined Cycle and Cogeneration