The last decade has seen remarkable improvement in gas turbine based power generation technologies, with the increasing use of natural gas-fuelled combined cycle units in various regions of the world. The struggle for efficiency has produced highly complex combined cycle schemes based on heat recovery steam generators with multiple pressure levels and possibly reheat. As ever, the evolution of these schemes is the result of a technico-economic balance between the improvement in performance and the increased costs resulting from a more complex system.

This paper looks from the thermodynamic point of view at some simplified combined cycle schemes based on the concept of water flashing. In such systems, high pressure saturated water is taken off the high pressure drum and flashed into a tank. The vapour phase is expanded as low pressure saturated steam or returned to the heat recovery steam generator for superheating, whilst the liquid phase is recirculated through the economizer.

With only one drum and three or four heat exchangers in the boiler as in single pressure level systems, the plant might have a performance similar to that of a more complex dual pressure level system. Various configurations with flash tanks are studied based on commercially available 150 MW-class E-technology gas turbines and compared with classical multiple pressure level combined cycles. Reheat units are covered, both with flash tanks and as genuine combined cycles for comparison purposes. The design implications for the heat recovery steam generator in terms of heat transfer surfaces are emphasized.

Off-design considerations are also covered for the flash based schemes, as well as transient performances of these schemes, because the simplicity of the flash systems compared to normal combined cycles significantly affects the dynamic behaviour of the plant.

This content is only available via PDF.