This paper reports the results of a numerical study on the fluid flow and heat transfer in a rotating square duct with 180 deg. bend. The computations are based the standard k-ε turbulence model with wall functions. At a fixed Reynolds number, results have been obtained over a range of Rotation numbers and coolant-to-wall temperature ratios. These results reflect the complex interaction of Coriolis forces, buoyancy forces, and curvature effects. For the outward leg, rotation causes the heat transfer enhancement on the trailing surface and degradation on the leading surface. However, in the inward leg, there is heat transfer degradation on the trailing surface and enhancement on the leading edge. The buoyancy forces cause further degradation in the heat transfer on the leading surface and enhancement on the trailing surface of the outward leg.

This content is only available via PDF.