A high Reynolds number pump (HIREP) facility has been used to acquire flow measurements in the rotor blade tip clearance region-with blade chord Reynolds numbers of 3,900,000 and 5,500,000. The initial experiment involved rotor blades with varying tip clearances, while a second experiment involved a more detailed investigation of a rotor blade row with a single tip clearance. This paper focuses on flow visualization, employing techniques unique for use in water. The flow visualization on the blade surface and within the flow field indicate that the combination of centripetal acceleration and separation near the trailing edge of the rotor blade suction surface results in the formation of a trailing-edge separation vortex-a vortex which migrates radially upwards along the trailing edge and then turns in the circumferential direction near the casing, moving in the opposite direction of blade rotation. Flow visualization also helps in establishing the trajectory of the tip leakage vortex core. The trailing-edge separation vortex, which lies closer to the endwall than the tip leakage vortex, seems to have an influence on this trajectory. Finally, the periodic interaction of the rotor blades with wakes from the upstream inlet guide vanes-as well as freestream turbulence and vortex structure instabilities-affects the unsteadiness of the vortex.

This content is only available via PDF.