In studying the stall inception process, while most results were reported for axial compressors, the present paper investigates the stall inception behavior typified in a centrifugal compressor. The test was conducted with a radially-bladed impeller and in a speed range of 8000–14000 rpm. Extensive pressure transducers were used to study the frequency characteristics of emerging stall waves.

As a result, stall precursors were detected, all with clear mode seen from frequency analysis, but very much different by the behavior of their onset, existence and development. The first type, called the stable-amplitude precursor, exists in a time range of about 20–90 impeller revolutions, with unpredictable and different frequencies from the fully developed stall. Such perturbation, once appeared, may grow to the full stall straightly, or may appear for several times intermittently before finally reaching the full stall, thus acting as a pre-precursor in the whole stall inception process. The second type is the progressive-amplitude precursor when the perturbation emerges as long as 270 impeller revolutions prior to and progressively develops into the full amplitude stall with no change of frequency during this process. The third type, which has been detected for the rotating stall with evident reverse flow symptom, is the precursive pressure increase accompanied with the stable- or progressive-amplitude perturbation, before the full stall establishes. The inception process is also examined for surge during the test of the same compressor, in which the existence of rotating stall in front of every surge cycle and the low frequency precursive wave before surge cycles is demonstrated. Finally, the blade passage frequencies for precursor pressure signals are further analysed to address the monitoring strategy during stall inception process.

This content is only available via PDF.