Strong, tough, high temperature ceramic matrix composites are currently being developed for application in advanced heat engines. One of the most promising of these new materials is a SiC fiber-reinforced silicon nitride ceramic matrix composite (SiCf/Si3N4). The interfacial shear strength in such composites is dependant on the integrity of the fiber’s carbon coating at the fiber-matrix interface. The integrity of the carbon rich interface can be significantly reduced if the carbon is oxidized. Since the thermal diffusivity of the fiber is greater than that of the matrix material, the removal of carbon increases the contact resistance at the interface reducing the thermal diffusivity of the composite. Therefore thermal diffusivity images can be used to characterize the progression of carbon depletion and degradation of the composite. A new thermal imaging technique has been developed to provide rapid large area measurements of the thermal diffusivity perpendicular to the fiber direction in these composites. Results of diffusivity measurements will be presented for a series of SiCf/Si3N4 (reaction bonded silicon nitride) composite samples heat-treated under various conditions. Additionally, the ability of this technique to characterize damage in both ceramic and other high temperature composites will be shown.

This content is only available via PDF.