A three-dimensional computation has been performed for a supersonic axial flow compressor rotor by solving the Navier-Stokes equations. The results of the computation are used to analyse the tip leakage flow in more detail. As well as the global behaviour of the tip leakage vortex, the analysis focuses on the origins of this vortex. It is shown that the main source of its vorticity is the shear layer at the tip of the blade associated with the shedding of the blade loading. A separation occurs, with respect to the axial velocity component, as the jet leakage flow, crossing the clearance gap, encounters the upstream incoming flow. Although the entropy increase of this separation is low, it has a strong effect on the mixing around the leakage vortex. Overall, for this compressor and the choosen operating point, the tip leakage effects are localised near the tip wall and suction side of the blade.

This content is only available via PDF.