This paper describes the design of a high-speed radial inflow turbine for use as part of a gas-generator, and the design of a large-scale (1.2 m tip dia.) low-speed model of the high-speed turbine. Stream-line curvature throughflow, two-dimensional blade-to-blade and fully three-dimensional inviscid and viscous calculation methods have been used extensively in the analysis of the designs. The use of appropriate scaling parameters and their impact on turbine performance is discussed. A simple model shows, for example, how to model the blade lean in the inducer which serves to balance the effect of meridional curvature at inlet to the rotor and can be used to unload the rotor tip. A brief description of the low speed experimental facility is followed by a presentation and discussion of experimental results. These include surface flow visualisation patterns on both the rotor and stator blades and blade row exit traverses.

This content is only available via PDF.