A CFD analysis of the cooling flow through a gas turbine engine low pressure turbine shaft is presented. Three cases are considered in which throughflow and rotation rate are varied. The primary objective of the analysis was to derive improved heat transfer coefficient information, over those obtainable via semi-empirical means. The coefficients so obtained were then used in a one-dimensional, time-dependent analysis for use in predicting shaft wall temperature throughout a snap acceleration phase of the engine. A second objective was to obtain insight into the flow structure within the shaft with a view to possible design input in future engine programs. Results presented include detailed velocity vector plots at select locations, heat transfer coefficient distributions for each case and finally, for Case 2 predicted wall temperature vs. time is shown in conjunction with engine test data.

This content is only available via PDF.