This paper presents a numerical method for the simulation of flow in turbomachinery blade rows using a solution-adaptive mesh methodolgy. The fully three dimensional, compressible, Reynolds averaged Navier-Stokes equations with k-ε turbulence modelling (and low Reynolds number damping terms) are solved on an unstructured mesh formed from tetrahedral finite volumes. At stages in the solution, mesh refinement is carried out based on flagging cell faces with either a fractional variation of a chosen variable (like Mach number) greater than a given threshold or with a mean value of the chosen variable within a given range. Several solutions are presented, including that for the highly three-dimensional flow associated with the corner stall and secondary flow in a transonic compressor cascade, to demonstrate the potential of the new method.

This content is only available via PDF.