Predictions of secondary flow in an axial turbine cascade have been made using three different turbulence models; mixing length, a one equation model and a k-epsilon/mixing length hybrid model. The results are compared with results from detailed measurements, not only by looking at mean flow velocities and total pressure loss, but also by assessing how well turbulence quantities are predicted. It is found that the turbulence model can have a big influence on the mean flow results, with the mixing length model giving generally the best mean flow. None of the models give good predictions of the turbulent shear stresses in the vortex region, although the k-epsilon model gives quite good turbulent kinetic energy values. The one equation model is the only one to contain a transition criterion. The importance of such a criterion is illustrated, but the present one needs development to give reliable predictions in the complex flow within a blade passage.

This content is only available via PDF.