Detailed measurements of surface static pressures and heat transfer rates on the aerofoil and hub end wall of an annular nozzle guide vane (in the absence of a downstream rotor) are presented. Heat transfer rates have been measured using thin film gauges in an annular cascade in the Pyestock Isentropic Light Piston Cascade. Test Mach numbers, Reynolds numbers and cascade geometry are fully representative of engine conditions. The results of 3-D calculations of surface Mach number and 2-D calculations of aerofoil heat transfer are presented and compared with the measurements.
A new method of calculating end wall heat transfer using the axisymmetric analogue for three-dimensional boundary layers is described in detail. The method uses a 3-D Euler solver to calculate the inviscid surface streamlines along which heat transfer coefficients are calculated. The metric coefficient which describes the lateral convergence or divergence of the streamlines is used to include three-dimensional effects in the calculation. The calculated heat transfer rates compare well with the measured values. Reference is made to surface flow visualization in the interpretation of the results.