Blade-cooling air for a high-pressure turbine is often supplied from pre-swirl nozzles attached to a stationary casing. By swirling the cooling air in the direction of rotation of the turbine disc, the temperature of the air relative to the blades can be reduced. The question addressed in this paper is: knowing the temperatures of the pre-swirl and disc-cooling flows, what is the temperature of the blade-cooling air?

A simple theoretical model, based on the Reynolds analogy applied to an adiabatic rotor-stator system, is used to calculate the pre-swirl effectiveness (that is, the reduction in the temperature of the blade-cooling air as a result of pre-swirling the flow). A mixing model is used to account for the ‘contamination’ of the blade-coolant with disc-cooling air, and an approximate solution is used to estimate the effect of frictional heating on the disc-cooling air.

Experiments were conducted in a rotor-stator rig which had pre-swirl nozzles in the stator and blade-cooling passages in the rotating disc. A radial outflow or inflow of disc-cooling air was also supplied, and measurements of the temperature difference between the pre-swirl and blade-cooling air were made for a range of flow rates and for rotational Reynolds numbers up to Reθ = 1.8 × 106. Considering the experimental errors in measuring the small temperature differences, good agreement between theory and experiment was achieved.

This content is only available via PDF.